
Debian Developer’s Reference
Adam Di Carlo, current maintainer <aph@debian.org>

Christian Schwarz <schwarz@debian.org>
Ian Jackson <ijackson@gnu.ai.mit.edu>

ver. 3.0, 14 June, 2002

Copyright Notice

copyright ©1998–2002 Adam Di Carlo
copyright ©1997, 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2, or
(at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL
in the Debian GNU/Linux distribution or on the World Wide Web at the GNU website (http:
//www.gnu.org/copyleft/gpl.html). You can also obtain it by writing to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

i

Contents

1 Scope of This Document 1

2 Applying to Become a Maintainer 3

2.1 Getting started . 3

2.2 Registering as a Debian developer . 4

2.3 Debian mentors and sponsors . 5

3 Debian Developer’s Duties 7

3.1 Maintaining your Debian information . 7

3.2 Maintaining your public key . 7

3.3 Voting . 8

3.4 Going on vacation gracefully . 8

3.5 Coordination with upstream developers . 8

3.6 Managing release-critical bugs . 9

3.7 Retiring . 9

4 Resources for Debian Developers 11

4.1 Mailing lists . 11

4.2 IRC channels . 12

4.3 Documentation . 12

4.4 Debian servers . 13

4.4.1 The master server . 13

CONTENTS ii

4.4.2 The ftp-master server . 13

4.4.3 The WWW server . 14

4.4.4 The CVS server . 14

4.4.5 The Developers Database . 14

4.5 Mirrors of Debian servers . 15

4.6 Other Debian developer machines . 15

4.7 The Debian archive . 15

4.7.1 Sections . 17

4.7.2 Architectures . 18

4.7.3 Packages . 18

4.7.4 Distribution directories . 19

4.7.5 Release code names . 21

4.8 The Incoming system . 21

4.8.1 Delayed incoming . 22

4.9 The testing scripts . 23

4.10 Package’s information . 24

4.10.1 On the web . 24

4.10.2 The madison utility . 24

4.11 The Package Tracking System . 24

4.11.1 The PTS email interface . 25

4.11.2 Filtering PTS mails . 26

4.11.3 Forwarding CVS commits in the PTS . 26

5 Managing Packages 27

5.1 Package uploads . 27

5.1.1 New packages . 27

5.1.2 Adding an entry to debian/changelog . 28

5.1.3 Checking the package prior to upload . 28

5.1.4 Generating the changes file . 29

CONTENTS iii

5.1.5 Uploading a package . 31

5.1.6 Announcing package uploads . 34

5.1.7 Notification that a new package has been installed 34

5.2 Non-Maintainer Uploads (NMUs) . 35

5.2.1 Terminology . 35

5.2.2 Who can do an NMU . 36

5.2.3 When to do a source NMU . 36

5.2.4 How to do a source NMU . 37

5.2.5 Acknowledging an NMU . 39

5.3 Porting and Being Ported . 39

5.3.1 Being kind to porters . 40

5.3.2 Guidelines for porter uploads . 41

5.3.3 Tools for porters . 42

5.4 Collaborative maintenance . 43

5.5 Moving, Removing, Renaming, Adopting, and Orphaning Packages 44

5.5.1 Moving packages . 44

5.5.2 Removing packages . 45

5.5.3 Replacing or renaming packages . 45

5.5.4 Orphaning a package . 46

5.5.5 Adopting a package . 46

5.6 Handling package bugs . 47

5.6.1 Monitoring bugs . 47

5.6.2 Responding to bugs . 47

5.6.3 Bug housekeeping . 47

5.6.4 When bugs are closed by new uploads . 49

5.6.5 Lintian reports . 50

CONTENTS iv

6 Best Packaging Practices 51

6.1 Packaging tools and common cases . 51

6.1.1 Helper scripts . 51

6.1.2 Package with multiple patches . 52

6.1.3 Multiple binary packages . 52

6.1.4 Handling debconf translations . 52

6.2 Specific packaging practices . 53

6.2.1 Libraries . 53

6.2.2 Other specific packages . 53

6.3 Configuration management . 54

6.3.1 The wise use of debconf . 54

6.4 Miscellaneous advice . 54

6.4.1 Writing useful descriptions . 54

7 Beyond Packaging 55

7.1 Bug Reporting . 55

7.1.1 Reporting lots of bugs at once . 56

7.2 Quality Assurance effort . 56

7.3 Dealing with unreachable maintainers . 56

7.4 Contacting other maintainers . 57

7.5 Interacting with prospective Debian developers . 57

7.5.1 Sponsoring packages . 57

7.5.2 Managing sponsored packages . 58

7.5.3 Advocating new developers . 58

7.5.4 Handling new maintainer applications . 58

A Overview of Debian Maintainer Tools 59

A.1 dpkg-dev . 59

A.2 lintian . 59

CONTENTS v

A.3 debconf . 60

A.4 debhelper . 60

A.5 debmake . 60

A.6 yada . 61

A.7 equivs . 61

A.8 cvs-buildpackage . 61

A.9 dupload . 61

A.10 dput . 61

A.11 fakeroot . 62

A.12 debootstrap . 62

A.13 pbuilder . 62

A.14 devscripts . 62

A.15 dpkg-dev-el . 62

A.16 debget . 63

CONTENTS vi

1

Chapter 1

Scope of This Document

The purpose of this document is to provide an overview of the recommended procedures and the
available resources for Debian developers.

The procedures discussed within include how to become a maintainer (‘Applying to Become a
Maintainer’ on page 3); how to upload new packages (‘Package uploads’ on page 27); how and
when to do ports and interim releases of other maintainers’ packages (‘Non-Maintainer Uploads
(NMUs)’ on page 35); how to move, remove, or orphan packages (‘Moving, Removing, Renaming,
Adopting, and Orphaning Packages’ on page 44); and how to handle bug reports (‘Handling
package bugs’ on page 47).

The resources discussed in this reference include the mailing lists (‘Mailing lists’ on page 11) and
servers (‘Debian servers’ on page 13); a discussion of the structure of the Debian archive (‘The
Debian archive’ on page 15); explanation of the different servers which accept package uploads
(‘Uploading to ftp-master ’ on page 31); and a discussion of resources which can help maintain-
ers with the quality of their packages (‘Overview of Debian Maintainer Tools’ on page 59).

It should be clear that this reference does not discuss the technical details of the Debian package
nor how to generate Debian packages. Nor does this reference detail the standards to which
Debian software must comply. All of such information can be found in the Debian Policy Manual
(http://www.debian.org/doc/debian-policy/).

Furthermore, this document is not an expression of formal policy. It contains documentation for the
Debian system and generally agreed-upon best practices. Thus, it is what is called a “normative”
document.

http://www.debian.org/doc/debian-policy/

Chapter 1. Scope of This Document 2

3

Chapter 2

Applying to Become a Maintainer

2.1 Getting started

So, you’ve read all the documentation, you’ve gone through the Debian New Maintainers’ Guide
(http://www.debian.org/doc/maint-guide/), understand what everything in the hello
example package is for, and you’re about to Debianize your favorite piece of software. How do
you actually become a Debian developer so that your work can be incorporated into the Project?

Firstly, subscribe to <debian-devel@lists.debian.org> if you haven’t already. Send the
word subscribe in the Subject of an email to <debian-devel-REQUEST@lists.debian.
org> . In case of problems, contact the list administrator at <listmaster@lists.debian.
org> . More information on available mailing lists can be found in ‘Mailing lists’ on page 11.
<debian-devel-announce@lists.debian.org> is another list which is mandatory for any-
one who wish to follow Debian’s development.

You should subscribe and lurk (that is, read without posting) for a bit before doing any coding,
and you should post about your intentions to work on something to avoid duplicated effort.

Another good list to subscribe to is <debian-mentors@lists.debian.org> . See ‘Debian
mentors and sponsors’ on page 5 for details. The IRC channel #debian on the Linux People IRC
network (e.g., irc.debian.org) can also be helpful.

When you know how you want to contribute to Debian GNU/Linux, you should get in contact
with existing Debian maintainers who are working on similar tasks. That way, you can learn
from experienced developers. For example, if you are interested in packaging existing software
for Debian you should try to get a sponsor. A sponsor will work together with you on your
package and upload it to the Debian archive once he is happy with the packaging work you have
done. You can find a sponsor by mailing the <debian-mentors@lists.debian.org> mailing
list, describing your package and yourself and asking for a sponsor (see ‘Sponsoring packages’
on page 57 for more information on sponsoring). On the other hand, if you are interested in

http://www.debian.org/doc/maint-guide/

Chapter 2. Applying to Become a Maintainer 4

porting Debian to alternative architectures or kernels you can subscribe to port specific mailing
lists and ask there how to get started. Finally, if you are interested in documentation or Quality
Assurance (QA) work you can join maintainers already working on these tasks and submit patches
and improvements.

2.2 Registering as a Debian developer

Before you decide to register with Debian GNU/Linux, you will need to read all the information
available at the New Maintainer’s Corner (http://www.debian.org/devel/join/newmaint).
It describes exactly the preparations you have to do before you can register to become a De-
bian developer. For example, before you apply, you have to to read the Debian Social Contract
(http://www.debian.org/social_contract). Registering as a developer means that you
agree with and pledge to uphold the Debian Social Contract; it is very important that maintainers
are in accord with the essential ideas behind Debian GNU/Linux. Reading the GNU Manifesto
(http://www.gnu.org/gnu/manifesto.html) would also be a good idea.

The process of registering as a developer is a process of verifying your identity and intentions,
and checking your technical skills. As the number of people working on Debian GNU/Linux has
grown to over 800 people and our systems are used in several very important places we have to
be careful about being compromised. Therefore, we need to verify new maintainers before we can
give them accounts on our servers and let them upload packages.

Before you actually register you should have shown that you can do competent work and will be
a good contributor. You can show this by submitting patches through the Bug Tracking System or
having a package sponsored by an existing maintainer for a while. Also, we expect that contribu-
tors are interested in the whole project and not just in maintaining their own packages. If you can
help other maintainers by providing further information on a bug or even a patch, then do so!

Registration requires that you are familiar with Debian’s philosophy and technical documentation.
Furthermore, you need a GnuPG key which has been signed by an existing Debian maintainer. If
your GnuPG key is not signed yet, you should try to meet a Debian maintainer in person to get
your key signed. There’s a GnuPG Key Signing Coordination page (http://nm.debian.org/
gpg.php) which should help you find a maintainer close to you (If you cannot find a Debian
maintainer close to you, there’s an alternative way to pass the ID check. You can send in a photo
ID signed with your GnuPG key. Having your GnuPG key signed is the preferred way, however.
See the identification page (http://www.debian.org/devel/join/nm-step2) for more in-
formation about these two options.)

If you do not have an OpenPGP key yet, generate one. Every developer needs a OpenPGP key
in order to sign and verify package uploads. You should read the manual for the software you
are using, since it has much important information which is critical to its security. Many more
security failures are due to human error than to software failure or high-powered spy techniques.
See ‘Maintaining your public key’ on page 7 for more information on maintaining your public key.

http://www.debian.org/devel/join/newmaint
http://www.debian.org/social_contract
http://www.gnu.org/gnu/manifesto.html
http://nm.debian.org/gpg.php
http://nm.debian.org/gpg.php
http://www.debian.org/devel/join/nm-step2

Chapter 2. Applying to Become a Maintainer 5

Debian uses the GNU Privacy Guard (package gnupg version 1 or better) as its baseline stan-
dard. You can use some other implementation of OpenPGP as well. Note that OpenPGP is an
open standard based on RFC 2440 (http://www.gnupg.org/rfc2440.html).

The recommended public key algorithm for use in Debian development work is the DSA (some-
times call “DSS” or “DH/ElGamal”). Other key types may be used however. Your key length
must be at least 1024 bits; there is no reason to use a smaller key, and doing so would be much less
secure. Your key must be signed with at least your own user ID; this prevents user ID tampering.
gpg does this automatically.

If your public key isn’t on public key servers such as pgp5.ai.mit.edu , please read the docu-
mentation available locally in /usr/share/doc/pgp/keyserv.doc . That document contains
instructions on how to put your key on the public key servers. The New Maintainer Group will
put your public key on the servers if it isn’t already there.

Some countries restrict the use of cryptographic software by their citizens. This need not impede
one’s activities as a Debian package maintainer however, as it may be perfectly legal to use crypto-
graphic products for authentication, rather than encryption purposes. Debian GNU/Linux does
not require the use of cryptography qua cryptography in any manner. If you live in a country
where use of cryptography even for authentication is forbidden then please contact us so we can
make special arrangements.

To apply as a new maintainer, you need an existing Debian maintainer to verify your application
(an advocate). After you have contributed to Debian for a while, and you want to apply to become
a registered developer, an existing developer with whom you have worked over the past months
has to express his belief that you can contribute to Debian successfully.

When you have found an advocate, have your GnuPG key signed and have already contributed to
Debian for a while, you’re ready to apply. You can simply register on our application page (http:
//nm.debian.org/newnm.php). After you have signed up, your advocate has to confirm your
application. When your advocate has completed this step you will be assigned an Application
Manager who will go with you through the necessary steps of the New Maintainer process. You
can always check your status on the applications status board (http://nm.debian.org/).

For more details, please consult New Maintainer’s Corner (http://www.debian.org/devel/
join/newmaint) at the Debian web site. Make sure that you are familiar with the necessary
steps of the New Maintainer process before actually applying. If you are well prepared, you can
save a lot of time later on.

2.3 Debian mentors and sponsors

The mailing list <debian-mentors@lists.debian.org> has been set up for novice maintain-
ers who seek help with initial packaging and other developer-related issues. Every new developer
is invited to subscribe to that list (see ‘Mailing lists’ on page 11 for details).

http://www.gnupg.org/rfc2440.html
http://nm.debian.org/newnm.php
http://nm.debian.org/newnm.php
http://nm.debian.org/
http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint

Chapter 2. Applying to Become a Maintainer 6

Those who prefer one-on-one help (e.g., via private email) should also post to that list and an
experienced developer will volunteer to help.

In addition, if you have some packages ready for inclusion in Debian, but are waiting for your new
maintainer application to go through, you might be able find a sponsor to upload your package
for you. Sponsors are people who are official Debian maintainers, and who are willing to criticize
and upload your packages for you. Those who are seeking a sponsor can request one at http:
//www.internatif.org/bortzmeyer/debian/sponsor/ .

If you wish to be a mentor and/or sponsor, more information is available in ‘Interacting with
prospective Debian developers’ on page 57.

http://www.internatif.org/bortzmeyer/debian/sponsor/
http://www.internatif.org/bortzmeyer/debian/sponsor/

7

Chapter 3

Debian Developer’s Duties

3.1 Maintaining your Debian information

There’s a LDAP database containing many informations concerning all developers, you can access
it at https://db.debian.org/ . You can update your password (this password is propagated
to most of the machines that are accessible to you), your address, your country, the latitude and
longitude of the point where you live, phone and fax numbers, your preferred shell, your IRC
nickname, your web page and the email that you’re using as alias for your debian.org email. Most
of the information is not accessible to the public, for more details about this database, please read
its online documentation that you can find at http://db.debian.org/doc-general.html .

You have to keep the information available there up-to-date.

3.2 Maintaining your public key

Be very careful with your private keys. Do not place them on any public servers or multiuser
machines, such as master.debian.org . Back your keys up; keep a copy offline. Read the
documentation that comes with your software; read the PGP FAQ (http://www.cam.ac.uk.
pgp.net/pgpnet/pgp-faq/).

If you add signatures to your public key, or add user identities, you can update the debian key ring
by sending your key to the key server at keyring.debian.org . If you need to add a completely
new key, or remove an old key, send mail to <keyring-maint@debian.org> . The same key
extraction routines discussed in ‘Registering as a Debian developer’ on page 4 apply.

You can find a more in-depth discussion of Debian key maintenance in the documentation of the
debian-keyring package.

https://db.debian.org/
http://db.debian.org/doc-general.html
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/

Chapter 3. Debian Developer’s Duties 8

3.3 Voting

Even if Debian is not always a real democracy, Debian has democratic tools and uses a democratic
process to elect its leader or to approve a general resolution. Those processes are described in the
Debian Constitution (http://www.debian.org/devel/constitution).

Democratic processes work well only if everybody take part in the vote, that’s why you have to
vote. To be able to vote you have to subscribe to <debian-devel-announce@lists.debian.
org> since call for votes are sent there. If you want to follow the debate preceding a vote, you
may want to subscribe to <debian-vote@lists.debian.org> .

The list of all the proposals (past and current) is available on the web at url-vote . You will find
there additional information about how to make a vote proposal.

3.4 Going on vacation gracefully

Most developers take vacations, and usually this means that they can’t work for Debian and they
can’t be reached by email if any problem occurs. The other developers need to know that you’re
on vacation so that they’ll do whatever is needed when such a problem occurs. Usually this means
that other developers are allowed to NMU (see ‘Non-Maintainer Uploads (NMUs)’ on page 35)
your package if a big problem (release critical bugs, security update, etc.) occurs while you’re on
vacation.

In order to inform the other developers, there’s two things that you should do. First send a mail
to <debian-private@lists.debian.org> giving the period of time when you will be on
vacation. You can also give some special instructions on what to do if any problem occurs. Be
aware that some people don’t care for vacation notices and don’t want to read them; you should
prepend “[VAC] ” to the subject of your message so that it can be easily filtered.

Next you should update your information available in the Debian LDAP database and mark your-
self as “on vacation” (this information is only accessible to debian developers). Don’t forget to
remove the “on vacation” flag when you come back!

3.5 Coordination with upstream developers

A big part of your job as Debian maintainer will be to stay in contact with the upstream develop-
ers. Debian users will sometimes report bugs to the Bug Tracking System that are not specific to
Debian. You must forward these bug reports to the upstream developers so that they can be fixed
in a future release. It’s not your job to fix non-Debian specific bugs. However, if you are able to
do so, you are encouraged to contribute to upstream development of the package by providing a

http://www.debian.org/devel/constitution
url-vote

Chapter 3. Debian Developer’s Duties 9

fix for the bug. Debian users and developers will often submit patches to fix upstream bugs, and
you should evaluate and forward these patches upstream.

If you need to modify the upstream sources in order to build a policy compliant package, then
you should propose a nice fix to the upstream developers which can be included there, so that
you won’t have to modify the sources of the next upstream version. Whatever changes you need,
always try not to fork from the upstream sources.

3.6 Managing release-critical bugs

Release-critical bugs (RCB) are all bugs that have severity critical, grave or serious. Those bugs can
delay the Debian release and/or can justify the removal of a package at freeze time. That’s why
these bugs need to be corrected as quickly as possible. You must be aware that some developers
who are part of the Debian Quality Assurance (http://qa.debian.org/) effort are following
those bugs and try to help you whenever they are able. But if you can’t fix such bugs within 2
weeks, you should either ask for help by sending a mail to the Quality Assurance (QA) group
<debian-qa@lists.debian.org> , or explain your difficulties and present a plan to fix them
by sending a mail to the proper bug report. Otherwise, people from the QA group may want to
do a Non-Maintainer Upload (see ‘Non-Maintainer Uploads (NMUs)’ on page 35) after trying to
contact you (they might not wait as long as usual before they do their NMU if they have seen no
recent activity from you in the BTS).

3.7 Retiring

If you choose to leave the Debian project, you should make sure you do the following steps:

1. Orphan all your packages, as described in ‘Orphaning a package’ on page 46.

2. Send an email about how you are leaving the project to <debian-private@lists.debian.
org> .

3. Notify the Debian key ring maintainers that you are leaving by emailing to <keyring-maint@
debian.org> .

http://qa.debian.org/

Chapter 3. Debian Developer’s Duties 10

11

Chapter 4

Resources for Debian Developers

In this chapter you will find a very brief road map of the Debian mailing lists, the main Debian
servers, other Debian machines which may be available to you as a developer, and all the other
resources that are available to help you in your maintainer work.

4.1 Mailing lists

The mailing list server is at lists.debian.org . Mail debian- foo -REQUEST@lists.debian.org ,
where debian- foo is the name of the list, with the word subscribe in the Subject to subscribe
to the list or unsubscribe to unsubscribe. More detailed instructions on how to subscribe and
unsubscribe to the mailing lists can be found at http://www.debian.org/MailingLists/
subscribe , ftp://ftp.debian.org/debian/doc/mailing-lists.txt or locally in /usr
/share/doc/debian/mailing-lists.txt if you have the doc-debian package installed.

When replying to messages on the mailing list, please do not send a carbon copy (CC) to the
original poster unless they explicitly request to be copied. Anyone who posts to a mailing list
should read it to see the responses.

The following are the core Debian mailing lists: <debian-devel@lists.debian.org> , <debian-policy@
lists.debian.org> , <debian-user@lists.debian.org> , <debian-private@lists.
debian.org> , <debian-announce@lists.debian.org> , and <debian-devel-announce@
lists.debian.org> . All developers are expected to be subscribed to at least <debian-devel-announce@
lists.debian.org> . There are other mailing lists available for a variety of special topics; see
http://www.debian.org/MailingLists/subscribe for a list. Cross-posting (sending the
same message to multiple lists) is discouraged.

<debian-private@lists.debian.org> is a special mailing list for private discussions amongst
Debian developers. It is meant to be used for posts which for whatever reason should not be pub-
lished publicly. As such, it is a low volume list, and users are urged not to use <debian-private@

http://www.debian.org/MailingLists/subscribe
http://www.debian.org/MailingLists/subscribe
ftp://ftp.debian.org/debian/doc/mailing-lists.txt
http://www.debian.org/MailingLists/subscribe

Chapter 4. Resources for Debian Developers 12

lists.debian.org> unless it is really necessary. Moreover, do not forward email from that list
to anyone. Archives of this list are not available on the web for obvious reasons, but you can see
them using your shell account on master.debian.org and looking in the ~debian/archive
/debian-private directory.

<debian-email@lists.debian.org> is a special mailing list used as a grab-bag for Debian
related correspondence such as contacting upstream authors about licenses, bugs, etc. or dis-
cussing the project with others where it might be useful to have the discussion archived some-
where.

As ever on the net, please trim down the quoting of articles you’re replying to. In general, please
adhere to the usual conventions for posting messages.

Online archives of mailing lists are available at http://lists.debian.org/ .

4.2 IRC channels

Several IRC channels are dedicated to Debian’s development. They are all hosted on the OpenPro-
jects (http://www.openprojects.net) network. The irc.debian.org DNS entry is just an
alias to irc.openprojects.net .

The main channel #debian-devel is very active since more than 150 persons are always logged
in. It’s a channel for people who work on Debian, it’s not a support channel (there’s #debian
for that). It is however open to anyone who wants to lurk (and learn). Its topic is always full
of interesting informations. Since it’s an open channel, you should not speak there of issues
that are discussed in <debian-private@lists.debian.org> . There’s a key protected chan-
nel #debian-private for that purpose. The key is available in the archives of debian-private in
master.debian.org:~debian/archive/debian-private/ , just zgrep for #debian-private
in all the files.

There are other additional channels dedicated to specific subjects. #debian-bugs is used for coordi-
nating bug squash parties. #debian-boot is used to coordinate the work on the boot floppies (i.e. the
installer). #debian-doc is occasionally used to work on documentation like the one you are read-
ing. Other channels are dedicated to an architecture or a set of packages: #debian-bsd, #debian-kde,
#debian-sf (SourceForge package), #debian-oo (OpenOffice package) . . .

Some non-English channels exist, for example #debian-devel-fr for French speaking people inter-
ested in Debian’s development.

4.3 Documentation

This document contains many informations very useful to Debian developers, but it can not con-
tain everything. Most of the other interesting documents are linked from The Developers’ Corner

http://lists.debian.org/
http://www.openprojects.net

Chapter 4. Resources for Debian Developers 13

(http://www.debian.org/devel/). Take the time to browse all the links, you will learn many
more things.

4.4 Debian servers

Debian servers are well known servers which serve critical functions in the Debian project. Every
developer should know what these servers are and what they do.

If you have a problem with the operation of a Debian server, and you think that the system opera-
tors need to be notified of this problem, please find the contact address for the particular machine
at http://db.debian.org/machines.cgi . If you have a non-operating problems (such as
packages to be remove, suggestions for the web site, etc.), generally you’ll report a bug against a
“pseudo-package”. See ‘Bug Reporting’ on page 55 for information on how to submit bugs.

4.4.1 The master server

master.debian.org is the canonical location for the Bug Tracking System (BTS). If you plan
on doing some statistical analysis or processing of Debian bugs, this would be the place to do
it. Please describe your plans on <debian-devel@lists.debian.org> before implementing
anything, however, to reduce unnecessary duplication of effort or wasted processing time.

All Debian developers have accounts on master.debian.org . Please take care to protect your
password to this machine. Try to avoid login or upload methods which send passwords over the
Internet in the clear.

If you find a problem with master.debian.org such as disk full, suspicious activity, or what-
ever, send an email to <debian-admin@debian.org> .

4.4.2 The ftp-master server

The ftp-master server, ftp-master.debian.org (or auric.debian.org), holds the canonical
copy of the Debian archive (excluding the non-US packages). Generally, package uploads go to
this server; see ‘Package uploads’ on page 27.

Problems with the Debian FTP archive generally need to be reported as bugs against the ftp.debian.org
pseudo-package or an email to <ftpmaster@debian.org> , but also see the procedures in ‘Mov-
ing, Removing, Renaming, Adopting, and Orphaning Packages’ on page 44.

http://www.debian.org/devel/
http://db.debian.org/machines.cgi

Chapter 4. Resources for Debian Developers 14

4.4.3 The WWW server

The main web server, www.debian.org , is also known as klecker.debian.org . All develop-
ers are given accounts on this machine.

If you have some Debian-specific information which you want to serve up on the web, you can do
this by putting material in the public_html directory under your home directory. You should
do this on klecker.debian.org . Any material you put in those areas are accessible via the
URL http://people.debian.org/~ user-id / . You should only use this particular location
because it will be backed up, whereas on other hosts it won’t. Please do not put any mate-
rial on Debian servers not relating to Debian, unless you have prior permission. Send mail to
<debian-devel@lists.debian.org> if you have any questions.

If you find a problem with the Debian web server, you should generally submit a bug against
the pseudo-package, www.debian.org . First check whether or not someone else has already
reported the problem on the Bug Tracking System (http://bugs.debian.org/www.debian.
org).

4.4.4 The CVS server

cvs.debian.org is also known as klecker.debian.org , discussed above. If you need to
use a publicly accessible CVS server, for instance, to help coordinate work on a package between
many different developers, you can request a CVS area on the server.

Generally, cvs.debian.org offers a combination of local CVS access, anonymous client-server
read-only access, and full client-server access through ssh . Also, the CVS area can be accessed
read-only via the Web at http://cvs.debian.org/ .

To request a CVS area, send a request via email to <debian-admin@debian.org> . Include the
name of the requested CVS area, the Debian account that should own the CVS root area, and why
you need it.

4.4.5 The Developers Database

The Developers Database, at https://db.debian.org/ , is an LDAP directory for managing
Debian developer attributes. You can use this resource to search the list of Debian developers.
For information on keeping your entry the developer database up-to-date, see ‘Maintaining your
Debian information’ on page 7. Part of this information is also available through the finger service
on Debian servers, try finger yourlogin@debian.org to see what it reports.

http://bugs.debian.org/www.debian.org
http://bugs.debian.org/www.debian.org
http://cvs.debian.org/
https://db.debian.org/

Chapter 4. Resources for Debian Developers 15

4.5 Mirrors of Debian servers

The web and FTP servers have several mirrors available. Please do not put heavy load on the
canonical FTP or web servers. Ideally, the canonical servers only mirror out to a first tier of mir-
rors, and all user access is to the mirrors. This allows Debian to better spread its bandwidth re-
quirements over several servers and networks. Note that newer push mirroring techniques ensure
that mirrors are as up-to-date as they can be.

The main web page listing the available public FTP (and, usually, HTTP) servers can be found at
http://www.debian.org/distrib/ftplist . More information concerning Debian mirrors
can be found at http://www.debian.org/mirror/ . This useful page includes information
and tools which can be helpful if you are interested in setting up your own mirror, either for
internal or public access.

Note that mirrors are generally run by third-parties who are interested in helping Debian. As
such, developers generally do not have accounts on these machines.

4.6 Other Debian developer machines

There are other Debian machines which may be made available to you. You can use these for
Debian-related purposes as you see fit. Please be kind to system administrators, and do not use
up tons and tons of disk space, network bandwidth, or CPU without first getting the approval of
the local maintainers. Usually these machines are run by volunteers. Generally, these machines
are for porting activities.

Aside from the servers mentioned in ‘Debian servers’ on page 13, there is a list of machines avail-
able to Debian developers at http://db.debian.org/machines.cgi .

4.7 The Debian archive

The Debian GNU/Linux distribution consists of a lot of packages (.deb ’s, currently around 9000)
and a few additional files (such documentation and installation disk images).

Here is an example directory tree of a complete Debian archive:

dists/stable/main/
dists/stable/main/binary-i386/
dists/stable/main/binary-m68k/
dists/stable/main/binary-alpha/

...

http://www.debian.org/distrib/ftplist
http://www.debian.org/mirror/
http://db.debian.org/machines.cgi

Chapter 4. Resources for Debian Developers 16

dists/stable/main/source/
...

dists/stable/main/disks-i386/
dists/stable/main/disks-m68k/
dists/stable/main/disks-alpha/

...

dists/stable/contrib/
dists/stable/contrib/binary-i386/
dists/stable/contrib/binary-m68k/
dists/stable/contrib/binary-alpha/

...
dists/stable/contrib/source/

dists/stable/non-free/
dists/stable/non-free/binary-i386/
dists/stable/non-free/binary-m68k/
dists/stable/non-free/binary-alpha/

...
dists/stable/non-free/source/

dists/testing/
dists/testing/main/

...
dists/testing/contrib/

...
dists/testing/non-free/

...

dists/unstable
dists/unstable/main/

...
dists/unstable/contrib/

...
dists/unstable/non-free/

...

pool/
pool/main/a/
pool/main/a/apt/

...
pool/main/b/

Chapter 4. Resources for Debian Developers 17

pool/main/b/bash/
...

pool/main/liba/
pool/main/liba/libalias-perl/

...
pool/main/m/
pool/main/m/mailx/

...
pool/non-free/n/
pool/non-free/n/netscape/

...

As you can see, the top-level directory contains two directories, dists/ and pool/ . The latter
is a “pool” in which the packages actually are, and which is handled by the archive maintenance
database and the accompanying programs. The former contains the distributions, stable, testing
and unstable. Each of those distribution directories is divided in equivalent subdirectories purpose
of which is equal, so we will only explain how it looks in stable. The Packages and Sources
files in the distribution subdirectories can reference files in the pool/ directory.

dists/stable contains three directories, namely main , contrib , and non-free .

In each of the areas, there is a directory for the source packages (source) and a directory for each
supported architecture (binary-i386 , binary-m68k , etc.).

The main area contains additional directories which holds the disk images and some essential
pieces of documentation required for installing the Debian distribution on a specific architecture
(disks-i386 , disks-m68k , etc.).

4.7.1 Sections

The main section of the Debian archive is what makes up the official Debian GNU/Linux distri-
bution. The main section is official because it fully complies with all our guidelines. The other two
sections do not, to different degrees; as such, they are not officially part of Debian GNU/Linux.

Every package in the main section must fully comply with the Debian Free Software Guidelines
(http://www.debian.org/social_contract#guidelines) (DFSG) and with all other pol-
icy requirements as described in the Debian Policy Manual (http://www.debian.org/doc/
debian-policy/). The DFSG is our definition of “free software.” Check out the Debian Policy
Manual for details.

Packages in the contrib section have to comply with the DFSG, but may fail other requirements.
For instance, they may depend on non-free packages.

http://www.debian.org/social_contract#guidelines
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 4. Resources for Debian Developers 18

Packages which do not conform to the DFSG are placed in the non-free section. These packages are
not considered as part of the Debian distribution, though we support their use, and we provide
infrastructure (such as our bug-tracking system and mailing lists) for non-free software packages.

The Debian Policy Manual (http://www.debian.org/doc/debian-policy/) contains a more
exact definition of the three sections. The above discussion is just an introduction.

The separation of the three sections at the top-level of the archive is important for all people who
want to distribute Debian, either via FTP servers on the Internet or on CD-ROMs: by distributing
only the main and contrib sections, one can avoid any legal risks. Some packages in the non-free
section do not allow commercial distribution, for example.

On the other hand, a CD-ROM vendor could easily check the individual package licenses of the
packages in non-free and include as many on the CD-ROMs as he’s allowed to. (Since this varies
greatly from vendor to vendor, this job can’t be done by the Debian developers.)

4.7.2 Architectures

In the first days, the Linux kernel was only available for the Intel i386 (or greater) platforms, and
so was Debian. But when Linux became more and more popular, the kernel was ported to other
architectures, too.

The Linux 2.0 kernel supports Intel x86, DEC Alpha, SPARC, Motorola 680x0 (like Atari, Amiga
and Macintoshes), MIPS, and PowerPC. The Linux 2.2 kernel supports even more architectures,
including ARM and UltraSPARC. Since Linux supports these platforms, Debian decided that it
should, too. Therefore, Debian has ports underway; in fact, we also have ports underway to
non-Linux kernel. Aside from i386 (our name for Intel x86), there is m68k, alpha, powerpc, sparc,
hurd-i386, arm, ia64, hppa, s390, mips, mipsel and sh as of this writing.

Debian GNU/Linux 1.3 is only available as i386. Debian 2.0 shipped for i386 and m68k architec-
tures. Debian 2.1 ships for the i386, m68k, alpha, and sparc architectures. Debian 2.2 added support
for the powerpc and arm architectures. Debian 3.0 adds support of five new architectures: ia64,
hppa, s390, mips and mipsel.

Information for developers or uses about the specific ports are available at the Debian Ports web
pages (http://www.debian.org/ports/).

4.7.3 Packages

There are two types of Debian packages, namely source and binary packages.

Source packages consist of either two or three files: a .dsc file, and either a .tar.gz file or both
an .orig.tar.gz and a .diff.gz file.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/ports/

Chapter 4. Resources for Debian Developers 19

If a package is developed specially for Debian and is not distributed outside of Debian, there
is just one .tar.gz file which contains the sources of the program. If a package is distributed
elsewhere too, the .orig.tar.gz file stores the so-called upstream source code, that is the source
code that’s distributed from the upstream maintainer (often the author of the software). In this case,
the .diff.gz contains the changes made by the Debian maintainer.

The .dsc file lists all the files in the source package together with checksums (md5sums) and
some additional info about the package (maintainer, version, etc.).

4.7.4 Distribution directories

The directory system described in the previous chapter is itself contained within distribution direc-
tories. Each distribution is actually contained in the pool directory in the top-level of the Debian
archive itself.

To summarize, the Debian archive has a root directory within an FTP server. For instance, at the
mirror site, ftp.us.debian.org , the Debian archive itself is contained in /debian , which is a
common location (another is /pub/debian).

A distribution is comprised of Debian source and binary packages, and the respective Sources
and Packages index files, containing the header information from all those packages. The former
are kept in the pool/ directory, while the latter are kept in the dists/ directory of the archive
(for backwards compatibility).

Stable, testing, and unstable

There are always distributions called stable (residing in dists/stable), one called testing (resid-
ing in dists/testing), and one called unstable (residing in dists/unstable). This reflects the
development process of the Debian project.

Active development is done in the unstable distribution (that’s why this distribution is sometimes
called the development distribution). Every Debian developer can update his or her packages in this
distribution at any time. Thus, the contents of this distribution changes from day-to-day. Since
no special effort is done to make sure everything in this distribution is working properly, it is
sometimes literally unstable.

The testing distribution is generated automatically by taking packages from unstable if they satisfy
certain criteria. Those criteria should ensure a good quality for packages within testing. ‘The
testing scripts’ on page 23 are launched each day after the new packages have been installed.

After a period of development, once the release manager deems fit, the testing distribution is
frozen, meaning that the policies which control how packages move from unstable to testing are
tightened. Packages which are too buggy are removed. No changes are allowed into testing except
for bug fixes. After some time has elapsed, depending on progress, the testing distribution goes

ftp.us.debian.org

Chapter 4. Resources for Debian Developers 20

into a ‘deep freeze’, when no changes are made to it except those needed for the installation sys-
tem. This is called a “test cycle”, and it can last up to two weeks. There can be several test cycles,
until the distribution is prepared for release, as decided by the release manager. At the end of the
last test cycle, the testing distribution is renamed to stable, overriding the old stable distribution,
which is removed at that time (although it can be found at archive.debian.org).

This development cycle is based on the assumption that the unstable distribution becomes sta-
ble after passing a period of being in testing. Even once a distribution is considered stable, a
few bugs inevitably remain — that’s why the stable distribution is updated every now and then.
However, these updates are tested very carefully and have to be introduced into the archive in-
dividually to reduce the risk of introducing new bugs. You can find proposed additions to stable
in the proposed-updates directory. Those packages in proposed-updates that pass muster
are periodically moved as a batch into the stable distribution and the revision level of the stable
distribution is incremented (e.g., ‘3.0’ becomes ‘3.0r1’, ‘2.2r4’ becomes ‘2.2r5’, and so forth).

Note that development under unstable continues during the freeze period, since the unstable dis-
tribution remains in place in parallel with testing.

Experimental

The experimental distribution is a special distribution. It is not a full distribution in the same sense
as ‘stable’ and ‘unstable’ are. Instead, it is meant to be a temporary staging area for highly ex-
perimental software where there’s a good chance that the software could break your system, or
software that’s just too unstable even for the unstable distribution (but there is a reason to package
it nevertheless). Users who download and install packages from experimental are expected to have
been duly warned. In short, all bets are off for the experimental distribution.

If there is a chance that the software could do grave damage to a system, it is likely to be better to
put it into experimental. For instance, an experimental compressed file system should probably go
into experimental.

Whenever there is a new upstream version of a package that introduces new features but breaks
a lot of old ones, it should either not be uploaded, or be uploaded to experimental. A new, beta,
version of some software which uses completely different configuration can go into experimental, at
the maintainer’s discretion. If you are working on an incompatible or complex upgrade situation,
you can also use experimental as a staging area, so that testers can get early access.

Some experimental software can still go into unstable, with a few warnings in the description, but
that isn’t recommended because packages from unstable are expected to propagate to testing and
thus to stable. You should not be afraid to use experimental since it does not cause any pain to the
ftpmasters, the experimental packages are automatically removed once you upload the package
in unstable with a higher version number.

New software which isn’t likely to damage your system can go directly into unstable.

Chapter 4. Resources for Debian Developers 21

An alternative to experimental is to use your personal web space on people.debian.org (klecker.debian.org).

4.7.5 Release code names

Every released Debian distribution has a code name: Debian 1.1 is called ‘buzz’; Debian 1.2, ‘rex’;
Debian 1.3, ‘bo’; Debian 2.0, ‘hamm’; Debian 2.1, ‘slink’; Debian 2.2, ‘potato’; and Debian 3.0,
‘woody’. There is also a “pseudo-distribution”, called ‘sid’, which is the current ‘unstable’ distri-
bution; since packages are moved from ‘unstable’ to ‘testing’ as they approach stability, ‘sid’ itself
is never released. As well as the usual contents of a Debian distribution, ‘sid’ contains packages
for architectures which are not yet officially supported or released by Debian. These architectures
are planned to be integrated into the mainstream distribution at some future date.

Since Debian has an open development model (i.e., everyone can participate and follow the devel-
opment) even the ‘unstable’ and ‘testing’ distributions are distributed to the Internet through the
Debian FTP and HTTP server network. Thus, if we had called the directory which contains the
release candidate version ‘testing’, then we would have to rename it to ‘stable’ when the version is
released, which would cause all FTP mirrors to re-retrieve the whole distribution (which is quite
large).

On the other hand, if we called the distribution directories Debian-x.y from the beginning, people
would think that Debian release x.y is available. (This happened in the past, where a CD-ROM
vendor built a Debian 1.0 CD-ROM based on a pre-1.0 development version. That’s the reason
why the first official Debian release was 1.1, and not 1.0.)

Thus, the names of the distribution directories in the archive are determined by their code names
and not their release status (e.g., ‘slink’). These names stay the same during the development
period and after the release; symbolic links, which can be changed easily, indicate the currently
released stable distribution. That’s why the real distribution directories use the code names, while
symbolic links for stable, testing, and unstable point to the appropriate release directories.

4.8 The Incoming system

The Incoming system is responsible of collecting updated packages and installing them in the De-
bian archive. It consists of a set of directories and scripts that are installed both on ftp-master.debian.org
and non-us.debian.org .

Packages are uploaded by all the maintainers into an unchecked directory. This directory is
scanned every 15 minutes by the katie script that verifies the integrity of the package and the
cryptographic signature. If the package is considered ready to be installed, it is moved into an
accepted directory. If it is the first upload of the package then it is moved in a new directory
waiting an approval of the ftpmasters. If the package contains files to be installed “by-hand” is

Chapter 4. Resources for Debian Developers 22

is moved in the byhand directory waiting a manual installation by the ftpmasters. Otherwise, if
any error has been detected, the package is refused and is moved in the reject directory.

Once the package is accepted the system sends a confirmation mail to the maintainer, closes all the
bugs marked as fixed by the upload and the auto-builders may start recompiling it. The package is
now publicly accessible at http://incoming.debian.org (there is no such URL for packages
in the non-US archive) until it is really installed in the Debian archive. This happens only once
a day, the package is then removed from incoming and installed in the pool along with all the
other packages. Once all the other updates (generating new Packages and Sources index files
for example) have been made, a special script is called to ask all the primary mirrors to update
themselves.

All debian developers have write access to the unchecked directory in order to upload their
packages, they also have that access to the reject directory in order to remove their bad uploads
or to move some files back in the unchecked directory. But all the other directories are only
writable by the ftpmasters, that is why you can not remove an upload once it has been accepted.

4.8.1 Delayed incoming

The unchecked directory has a special DELAYEDsubdirectory. It is itself subdivided in nine
directories called 1-day to 9-day . Packages which are uploaded in one of those directories will
be moved in the real unchecked directory after the corresponding number of days. This is done by
a script that is run each day and which moves the packages between the directories. Those which
are in “1-day” are installed in unchecked while the others are moved in the adjacent directory
(for example, a package in 5-day will be moved in 4-day). This feature is particularly useful for
people who are doing non-maintainer uploads. Instead of waiting before uploading a NMU, it is
uploaded as soon as it is ready but in one of those DELAYED/x -day directories. That leaves the
corresponding number of days to the maintainer in order to react and upload himself another fix
if he is not completely satisfied with the NMU. Alternatively he can remove the NMU by himself.

The use of that delayed feature can be simplified with a bit of integration with your upload tool.
For instance, if you use dupload (see ‘dupload ’ on page 61), you can add this snippet to your
configuration file:

$delay = ($ENV{DELAY} || 7);
$cfg{’delayed’} = {

fqdn => "ftp-master.debian.org",
login => "yourdebianlogin",
incoming => "/org/ftp.debian.org/incoming/DELAYED/$delay-day/",
visibleuser => "yourdebianlogin",
visiblename => "debian.org",
fullname => "Your Full Name",
dinstall_runs => 1,

http://incoming.debian.org

Chapter 4. Resources for Debian Developers 23

method => "scpb"
};

Once you’ve made that change, dupload can be used to easily upload a package in one of the
delayed directories:

DELAY=5 dupload --to delayed <changes-file>

4.9 The testing scripts

The testing scripts are run each day after the installation of the updated packages. They generate
the Packages files for the testing distribution, but they do so in an intelligent manner trying to
avoid any inconsistency and trying to use only non-buggy packages.

The inclusion of a package from unstable is conditional on the following:

• The package must have been available in unstable for several days; the precise number de-
pends on the upload’s urgency field. It is 10 days for low urgency, 5 days for medium
urgency and 2 days for high urgency. Those delays may be doubled during a freeze;

• It must have less release-critical bugs than the version available in testing;

• It must be available on all architectures on which it has been previously built. ‘The madison
utility’ on the next page may be of interest to check that information;

• It must not break any dependency of a package that is already available in testing;

• The packages on which it depends must either be available in testing or they must be ac-
cepted into testing at the same time (and they will if they respect themselves all the criteria);

The scripts are generating some output files to explain why some packages are kept out of testing.
They are available at http://ftp-master.debian.org/testing/ . Alternatively, it is possi-
ble to use the grep-excuses program part of the devscripts package. It can be easily put in a
crontab to keep someone informed of the progression of his packages in testing.

The update_excuses file does not always give the precise reason why the package is refused,
one may have to find it by himself by looking what would break with the inclusion of the package.
The testing FAQ (http://people.debian.org/~jules/testingfaq.html) gives some more
information about the usual problems which may be causing such troubles.

Sometimes, some packages never enter testing because the set of inter-relationship is too compli-
cated and can not be sorted out by the scripts. In that case, the release manager must be contacted,
and he will force the inclusion of the packages.

http://ftp-master.debian.org/testing/
http://people.debian.org/~jules/testingfaq.html

Chapter 4. Resources for Debian Developers 24

4.10 Package’s information

4.10.1 On the web

Each package has several dedicated web pages that contains many informations. http://packages.debian.org/ package-name
will display each version of the package available in the various distributions. The per-version de-
tailed information includes the package description, the dependencies and links to download the
package.

The bug tracking system sorts the bugs by package, you can watch the bugs of each package at
http://bugs.debian.org/ package-name .

4.10.2 The madison utility

madison is a command-line utility that is available on both ftp-master.debian.org and
non-us.debian.org . It uses a single argument corresponding to a package name. In result
it displays which version of the package is available for each architecture and distribution combi-
nation. An example will explain it better.

$ madison libdbd-mysql-perl
libdbd-mysql-perl | 1.2202-4 | stable | source, alpha, arm, i386, m68k, powerpc, sparc
libdbd-mysql-perl | 1.2216-2 | testing | source, arm, hppa, i386, ia64, m68k, mips, mipsel, powerpc, s390, sparc
libdbd-mysql-perl | 1.2216-2.0.1 | testing | alpha
libdbd-mysql-perl | 1.2219-1 | unstable | source, alpha, arm, hppa, i386, ia64, m68k, mips, mipsel, powerpc, s390, sparc

In this example, you can see that the version in unstable differs from the version in testing and
that there has been a binary-only NMU of the package for the alpha architecture. Each time the
package has been recompiled on most of the architectures.

4.11 The Package Tracking System

The Package Tracking System (PTS) is basically a tool to track by mail the activity of a source
package. You just have to subscribe to a source package to start getting the mails related to it. You
get the same mails than the maintainer. Each mail sent through the PTS is classified and associated
to one of the keyword listed below. This will let you select the mails that you want to receive.

By default you will get:

bts All the bug reports and following discussions.

Chapter 4. Resources for Debian Developers 25

bts-control The control mails notifying a status change in one of the bugs.

upload-source The confirmation mail from katie when an uploaded source package is ac-
cepted.

katie-other Other warning and error mails from katie (like the override disparity for the
section or priority field).

default Any non-automatic mail sent to the PTS by people who wanted to contact the sub-
scribers of the package.

summary In the future, you may receive regular summary mails to keep you informed of the
package’s status (bug statistics, porting overview, progression in testing, . . .).

You can also decide to receive some more information:

upload-binary The confirmation mail from katie when an uploaded binary package is ac-
cepted (to check that your package is recompiled for all architectures).

cvs CVS commits if the maintainer has setup a system to forward commit notification to the PTS.

4.11.1 The PTS email interface

You can control your subscription(s) to the PTS by sending various commands to <pts@qa.
debian.org> .

subscribe <srcpackage> [<email>] Subscribes email to communications related to the source
package srcpackage. Sender address is used if the second argument is not present. If srcpack-
age is not a valid source package, you’ll get a warning. However if it’s a valid binary package,
the PTS will subscribe you to the corresponding source package.

unsubscribe <srcpackage> [<email>] Removes a previous subscription to the source pack-
age srcpackage using the specified email address or the sender address if the second argument
is left out.

which [<email>] Lists all subscriptions for the sender or the email address optionally speci-
fied.

keyword [<email>] Tells you the keywords that you are accepting. Each mail sent through
the Package Tracking System is associated to a keyword and you receive only the mails
associated to keywords that you are accepting. Here is the list of available keywords:

• bts : mails coming from the Debian Bug Tracking System

Chapter 4. Resources for Debian Developers 26

• bts-control : reply to mails sent to <control@bugs.debian.org>

• summary : automatic summary mails about the state of a package

• cvs : notification of CVS commits

• upload-source : announce of a new source upload that has been accepted

• upload-binary : announce of a new binary-only upload (porting)

• katie-other : other mails from ftpmasters (override disparity, etc.)

• default : all the other mails (those which aren’t “automatic”)

keyword <srcpackage> [<email>] Same as previous item but for the given source package
since you may select a different set of keywords for each source package.

keyword [<email>] {+|-|=} <list of keywords> Accept (+) or refuse (-) mails associ-
ated to the given keyword(s). Define the list (=) of accepted keywords.

keyword <srcpackage> [<email>] {+|-|=} <list of keywords> Same as previous item
but overrides the keywords list for the indicated source package.

quit | thanks | -- Stops processing commands. All following lines are ignored by the bot.

4.11.2 Filtering PTS mails

Once you are subscribed to a package, you will get the mails sent to srcpackage @packages.qa.debian.org .
Those mails have special headers appended to let you filter them in a special mailbox with procmail .
The added headers are X-Loop , X-PTS-Package , X-PTS-Keyword and X-Unsubscribe .

Here is an example of added headers for a source upload notification on the dpkg package:

X-Loop: dpkg@packages.qa.debian.org
X-PTS-Package: dpkg
X-PTS-Keyword: upload-source
X-Unsubscribe: echo ’unsubscribe dpkg’ | mail pts@qa.debian.org

4.11.3 Forwarding CVS commits in the PTS

If you use a publicly accessible CVS repository for maintaining your Debian package you may
want to forward the commit notification to the PTS so that the subscribers (possible co-maintainers)
can closely follow the package’s evolution.

It’s very easy to setup. Once your CVS repository generates commit notifications, you just have
to make sure it sends a copy of those mails to srcpackage _cvs@packages.qa.debian.org .
Only people who accepts the cvs keyword will receive the notifications.

27

Chapter 5

Managing Packages

This chapter contains information related to creating, uploading, maintaining, and porting pack-
ages.

5.1 Package uploads

5.1.1 New packages

If you want to create a new package for the Debian distribution, you should first check the Work-
Needing and Prospective Packages (WNPP) (http://www.debian.org/devel/wnpp/) list.
Checking the WNPP list ensures that no one is already working on packaging that software, and
that effort is not duplicated. Read the WNPP web pages (http://www.debian.org/devel/
wnpp/) for more information.

Assuming no one else is already working on your prospective package, you must then submit a
bug report (‘Bug Reporting’ on page 55) against the pseudo-package wnpp describing your plan
to create a new package, including, but not limiting yourself to, a description of the package, the
license of the prospective package and the current URL where it can be downloaded from.

You should set the subject of the bug to “ITP: foo – short description”, substituting the name of
the new package for foo. The severity of the bug report must be set to wishlist. If you feel it’s
necessary, send a copy to <debian-devel@lists.debian.org> by putting the address in the
X-Debbugs-CC: header of the message (no, don’t use CC: , because that way the message’s sub-
ject won’t indicate the bug number).

Please include a Closes: bug# nnnnn entry on the changelog of the new package in order for
the bug report to be automatically closed once the new package is installed on the archive (‘When
bugs are closed by new uploads’ on page 49).

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/

Chapter 5. Managing Packages 28

There are a number of reasons why we ask maintainers to announce their intentions:
• It helps the (potentially new) maintainer to tap into the experience of people on the list, and

lets them know if anyone else is working on it already.
• It lets other people thinking about working on the package know that there already is a

volunteer, so efforts may be shared.
• It lets the rest of the maintainers know more about the package than the one line description

and the usual changelog entry “Initial release” that gets posted to debian-devel-changes .
• It is helpful to the people who live off unstable (and form our first line of testers). We should

encourage these people.
• The announcements give maintainers and other interested parties a better feel of what is

going on, and what is new, in the project.

5.1.2 Adding an entry to debian/changelog

Changes that you make to the package need to be recorded in the debian/changelog . These
changes should provide a concise description of what was changed, why (if it’s in doubt), and note
if any bugs were closed. They also record when the package was completed. This file will be in-
stalled in /usr/share/doc/ package /changelog.Debian.gz , or /usr/share/doc/ package
/changelog.gz for native packages.

The debian/changelog file conforms to a certain structure, with a number of different fields.
One field of note, the distribution, is described in ‘Picking a distribution’ on page 30. More infor-
mation about the structure of this file can be found in the Debian Policy section titled “debian
/changelog ”.

Changelog entries can be used to automatically close Debian bugs when the package is installed
into the archive. See ‘When bugs are closed by new uploads’ on page 49.

It is conventional that the changelog entry notating of a package that contains a new upstream
version of the software looks like this:

* new upstream version

There are tools to help you create entries and finalize the changelog for release — see ‘devscripts ’
on page 62 and ‘dpkg-dev-el ’ on page 62.

5.1.3 Checking the package prior to upload

Before you upload your package, you should do basic testing on it. At a minimum, you should try
the following activities (you’ll need to have an older version of the same Debian package around):

Chapter 5. Managing Packages 29

• Install the package and make sure the software works, or upgrade the package from an older
version to your new version if a Debian package for it already exists.

• Run lintian over the package. You can run lintian as follows: lintian -v package-version .changes .
This will check the source package as well as the binary package. If you don’t understand
the output that lintian generates, try adding the -i switch, which will cause lintian to
output a very verbose description of the problem.

Normally, a package should not be uploaded if it causes lintian to emit errors (they will start
with E).

For more information on lintian , see ‘lintian ’ on page 59.

• Downgrade the package to the previous version (if one exists) — this tests the postrm and
prerm scripts.

• Remove the package, then reinstall it.

5.1.4 Generating the changes file

When a package is uploaded to the Debian FTP archive, it must be accompanied by a .changes
file, which gives directions to the archive maintainers for its handling. This is usually generated
by dpkg-genchanges during the normal package build process.

The changes file is a control file with the following fields:
• Format
• Date
• Source
• Binary
• Architecture
• Version
• Distribution
• Urgency
• Maintainer
• Description
• Changes
• Files

All of these fields are mandatory for a Debian upload. See the list of control fields in the Debian
Policy Manual (http://www.debian.org/doc/debian-policy/) for the contents of these
fields. You can close bugs automatically using the Description field, see ‘When bugs are closed
by new uploads’ on page 49.

http://www.debian.org/doc/debian-policy/

Chapter 5. Managing Packages 30

The original source tarball

The first time a version is uploaded which corresponds to a particular upstream version, the orig-
inal source tar file should be uploaded and included in the .changes file. Subsequently, this
very same tar file should be used to build the new diffs and .dsc files, and will not need to be
re-uploaded.

By default, dpkg-genchanges and dpkg-buildpackage will include the original source tar
file if and only if the Debian revision part of the source version number is 0 or 1, indicating a new
upstream version. This behavior may be modified by using -sa to always include it or -sd to
always leave it out.

If no original source is included in the upload, the original source tar-file used by dpkg-source
when constructing the .dsc file and diff to be uploaded must be byte-for-byte identical with the
one already in the archive.

Picking a distribution

The Distribution field, which originates from the first line of the debian/changelog file,
indicates which distribution the package is intended for.

There are three possible values for this field: ‘stable’, ‘unstable’, and ‘experimental’. Normally,
packages are uploaded into unstable.

You should avoid combining ‘stable’ with others because of potential problems with library de-
pendencies (for your package and for the package built by the build daemons for other architec-
ture). See ‘Uploading to stable’ on this page for more information on when and how to upload to
stable.

It never makes sense to combine the experimental distribution with anything else.

Uploading to stable Uploading to stable means that the package will be placed into the proposed-updates
directory of the Debian archive for further testing before it is actually included in stable.

Extra care should be taken when uploading to stable. Basically, a package should only be uploaded
to stable if one of the following happens:

• a security problem (e.g. a Debian security advisory)

• a truly critical functionality problem

• the package becomes uninstallable

• a released architecture lacks the package

Chapter 5. Managing Packages 31

It is discouraged to change anything else in the package that isn’t important, because even trivial
fixes can cause bugs later on. Uploading new upstream versions to fix security problems is depre-
cated; applying the specific patch from the new upstream version to the old one (“back-porting”
the patch) is the right thing to do in most cases.

Packages uploaded to stable need to be compiled on systems running stable, so that their depen-
dencies are limited to the libraries (and other packages) available in stable; for example, a package
uploaded to stable that depends on a library package that only exists in unstable will be rejected.
Making changes to dependencies of other packages (by messing with Provides or shlibs files),
possibly making those other packages uninstallable, is strongly discouraged.

The Release Team (which can be reached at <debian-release@lists.debian.org>) will
regularly evaluate the uploads in proposed-updates and decide if your package can be included
in stable. Please be clear (and verbose, if necessary) in your changelog entries for uploads to stable,
because otherwise the package won’t be considered for inclusion.

5.1.5 Uploading a package

Uploading to ftp-master

To upload a package, you need a personal account on ftp-master.debian.org , which you
should have as an official maintainer. If you use scp or rsync to transfer the files, place them
into /org/ftp.debian.org/incoming/ ; if you use anonymous FTP to upload, place them
into /pub/UploadQueue/ . Please note that you should transfer the changes file last. Otherwise,
your upload may be rejected because the archive maintenance software will parse the changes file
and see that not all files have been uploaded. If you don’t want to bother with transferring the
changes file last, you can simply copy your files to a temporary directory on ftp-master and
then move them to /org/ftp.debian.org/incoming/ .

Note: Do not upload to ftp-master cryptographic packages which belong to contrib or non-
free. Uploads of such software should go to non-us (see ‘Uploading to non-US (pandora)’ on
the next page). Furthermore packages containing code that is patent-restricted by the United
States government can not be uploaded to ftp-master ; depending on the case they may still be
uploaded to non-US/non-free (it’s in non-free because of distribution issues and not because
of the license of the software). If you can’t upload it to ftp-master , then neither can you upload
it to the overseas upload queues on chiark or erlangen . If you are not sure whether U.S. patent
controls or cryptographic controls apply to your package, post a message to <debian-devel@
lists.debian.org> and ask.

You may also find the Debian packages ‘dupload ’ on page 61 or ‘dput ’ on page 61 useful when
uploading packages. These handy programs help automate the process of uploading packages
into Debian.

ftp-master.debian.org

Chapter 5. Managing Packages 32

After uploading your package, you can check how the archive maintenance software will process
it by running dinstall on your changes file:

dinstall -n foo.changes

. Note that dput can do this for you automatically.

Uploading to non-US (pandora)

As discussed above, export controlled software should not be uploaded to ftp-master . Instead,
upload the package to non-us.debian.org , placing the files in /org/non-us.debian.org
/incoming/ (again, both ‘dupload ’ on page 61 and ‘dput ’ on page 61 can do this for you if in-
voked properly). By default, you can use the same account/password that works on ftp-master .
If you use anonymous FTP to upload, place the files into /pub/UploadQueue/ .

You can check your upload the same way it’s done on ftp-master , with:

dinstall -n foo.changes

Note that U.S. residents or citizens are subject to restrictions on export of cryptographic software.
As of this writing, U.S. citizens are allowed to export some cryptographic software, subject to noti-
fication rules by the U.S. Department of Commerce. However, this restriction has been waived for
software which is already available outside the U.S. Therefore, any cryptographic software which
belongs in the main section of the Debian archive and does not depend on any package outside of
main (e.g., does not depend on anything in non-US/main) can be uploaded to ftp-master or its
queues, described above.

Debian policy does not prevent upload to non-US by U.S. residents or citizens, but care should be
taken in doing so. It is recommended that developers take all necessary steps to ensure that they
are not breaking current US law by doing an upload to non-US, including consulting a lawyer.

For packages in non-US/main, non-US/contrib, developers should at least follow the procedure out-
lined by the US Government (http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.
html). Maintainers of non-US/non-free packages should further consult the rules on notification of
export (http://www.bxa.doc.gov/Encryption/) of non-free software.

This section is for information only and does not constitute legal advice. Again, it is strongly
recommended that U.S. citizens and residents consult a lawyer before doing uploads to non-US.

non-us.debian.org
http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/

Chapter 5. Managing Packages 33

Uploads via chiark

If you have a slow network connection to ftp-master , there are alternatives. One is to upload
files to Incoming via a upload queue in Europe on chiark . For details connect to ftp://ftp.
chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload .

Note: Do not upload packages containing software that is export-controlled by the United States
government to the queue on chiark . Since this upload queue goes to ftp-master , the prescrip-
tion found in ‘Uploading to ftp-master ’ on page 31 applies here as well.

The program dupload comes with support for uploading to chiark ; please refer to the docu-
mentation that comes with the program for details.

Uploads via erlangen

Another upload queue is available in Germany: just upload the files via anonymous FTP to ftp:
//ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/ .

The upload must be a complete Debian upload, as you would put it into ftp-master ’s Incoming ,
i.e., a .changes files along with the other files mentioned in the .changes . The queue daemon
also checks that the .changes is correctly signed with GnuPG or OpenPGP by a Debian devel-
oper, so that no bogus files can find their way to ftp-master via this queue. Please also make
sure that the Maintainer field in the .changes contains your e-mail address. The address found
there is used for all replies, just as on ftp-master .

There’s no need to move your files into a second directory after the upload, as on chiark . And,
in any case, you should get a mail reply from the queue daemon explaining what happened to
your upload. Hopefully it should have been moved to ftp-master , but in case of errors you’re
notified, too.

Note: Do not upload packages containing software that is export-controlled by the United States
government to the queue on erlangen . Since this upload queue goes to ftp-master , the pre-
scription found in ‘Uploading to ftp-master ’ on page 31 applies here as well.

The program dupload comes with support for uploading to erlangen ; please refer to the docu-
mentation that comes with the program for details.

Other upload queues

Another upload queue is available which is based in the US, and is a good backup when there are
problems reaching ftp-master . You can upload files, just as in erlangen , to ftp://samosa.
debian.org/pub/UploadQueue/ .

An upload queue is available in Japan: just upload the files via anonymous FTP to ftp://
master.debian.or.jp/pub/Incoming/upload/ .

ftp://ftp.chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload
ftp://ftp.chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload
ftp://ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/
ftp://ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/
ftp://samosa.debian.org/pub/UploadQueue/
ftp://samosa.debian.org/pub/UploadQueue/
ftp://master.debian.or.jp/pub/Incoming/upload/
ftp://master.debian.or.jp/pub/Incoming/upload/

Chapter 5. Managing Packages 34

5.1.6 Announcing package uploads

When a package is uploaded, an announcement should be posted to one of the “debian-changes”
lists. This is now done automatically by the archive maintenance software when it runs (usu-
ally once a day). You just need to use a recent dpkg-dev (>= 1.4.1.2). The mail generated by
the archive maintenance software will contain the OpenPGP/GnuPG signed .changes files that
you uploaded with your package. Previously, dupload used to send those announcements, so
please make sure that you configured your dupload not to send those announcements (check its
documentation and look for “dinstall_runs”).

If a package is released with the Distribution: set to ‘stable’, the announcement is sent to
<debian-changes@lists.debian.org> . If a package is released with Distribution: set
to ‘unstable’, or ‘experimental’, the announcement will be posted to <debian-devel-changes@
lists.debian.org> instead.

5.1.7 Notification that a new package has been installed

The Debian archive maintainers are responsible for handling package uploads. For the most part,
uploads are automatically handled on a daily basis by the archive maintenance tools, katie .
Specifically, updates to existing packages to the ‘unstable’ distribution are handled automatically.
In other cases, notably new packages, placing the uploaded package into the distribution is han-
dled manually. When uploads are handled manually, the change to the archive may take up to a
month to occur. Please be patient.

In any case, you will receive an email notification indicating that the package has been added to
the archive, which also indicates which bugs will be closed by the upload. Please examine this
notification carefully, checking if any bugs you meant to close didn’t get triggered.

The installation notification also includes information on what section the package was inserted
into. If there is a disparity, you will receive a separate email notifying you of that. Read on below.

The override file

The debian/control file’s Section and Priority fields do not actually specify where the
file will be placed in the archive, nor its priority. In order to retain the overall integrity of the
archive, it is the archive maintainers who have control over these fields. The values in the debian
/control file are actually just hints.

The archive maintainers keep track of the canonical sections and priorities for packages in the
override file. If there is a disparity between the override file and the package’s fields as indicated
in debian/control , then you will receive an email noting the divergence when the package is
installed into the archive. You can either correct your debian/control file for your next upload,
or else you may wish to make a change in the override file.

Chapter 5. Managing Packages 35

To alter the actual section that a package is put in, you need to first make sure that the debian
/control in your package is accurate. Next, send an email <override-change@debian.
org> or submit a bug against ftp.debian.org requesting that the section or priority for your
package be changed from the old section or priority to the new one. Be sure to explain your
reasoning.

For more information about override files, see dpkg-scanpackages(8) , /usr/share/doc/debian
/bug-log-mailserver.txt , and /usr/share/doc/debian/bug-maint-info.txt .

5.2 Non-Maintainer Uploads (NMUs)

Under certain circumstances it is necessary for someone other than the official package maintainer
to make a release of a package. This is called a non-maintainer upload, or NMU.

Debian porters, who compile packages for different architectures, occasionally do binary-only
NMUs as part of their porting activity (see ‘Porting and Being Ported’ on page 39). Another reason
why NMUs are done is when a Debian developers needs to fix another developers’ packages in
order to address serious security problems or crippling bugs, especially during the freeze, or when
the package maintainer is unable to release a fix in a timely fashion.

This chapter contains information providing guidelines for when and how NMUs should be done.
A fundamental distinction is made between source and binary-only NMUs, which is explained in
the next section.

5.2.1 Terminology

There are two new terms used throughout this section: “binary-only NMU” and “source NMU”.
These terms are used with specific technical meaning throughout this document. Both binary-only
and source NMUs are similar, since they involve an upload of a package by a developer who is
not the official maintainer of that package. That is why it’s a non-maintainer upload.

A source NMU is an upload of a package by a developer who is not the official maintainer, for
the purposes of fixing a bug in the package. Source NMUs always involves changes to the source
(even if it is just a change to debian/changelog). This can be either a change to the upstream
source, or a change to the Debian bits of the source. Note, however, that source NMUs may also
include architecture-dependent packages, as well as an updated Debian diff.

A binary-only NMU is a recompilation and upload of a binary package for a given architecture.
As such, it is usually part of a porting effort. A binary-only NMU is a non-maintainer uploaded
binary version of a package, with no source changes required. There are many cases where porters
must fix problems in the source in order to get them to compile for their target architecture; that
would be considered a source NMU rather than a binary-only NMU. As you can see, we don’t
distinguish in terminology between porter NMUs and non-porter NMUs.

Chapter 5. Managing Packages 36

Both classes of NMUs, source and binary-only, can be lumped by the term “NMU”. However, this
often leads to confusion, since most people think “source NMU” when they think “NMU”. So it’s
best to be careful. In this chapter, if we use the unqualified term “NMU”, we refer to any type of
non-maintainer upload NMUs, whether source and binary, or binary-only.

5.2.2 Who can do an NMU

Only official, registered Debian maintainers can do binary or source NMUs. An official maintainer
is someone who has their key in the Debian key ring. Non-developers, however, are encouraged to
download the source package and start hacking on it to fix problems; however, rather than doing
an NMU, they should just submit worthwhile patches to the Bug Tracking System. Maintainers
almost always appreciate quality patches and bug reports.

5.2.3 When to do a source NMU

Guidelines for when to do a source NMU depend on the target distribution, i.e., stable, unsta-
ble, or experimental. Porters have slightly different rules than non-porters, due to their unique
circumstances (see ‘When to do a source NMU if you are a porter’ on page 42).

When a security bug is detected, a fixed package should be uploaded as soon as possible. In this
case, the Debian security officers get in contact with the package maintainer to make sure a fixed
package is uploaded within a reasonable time (less than 48 hours). If the package maintainer
cannot provide a fixed package fast enough or if he/she cannot be reached in time, a security
officer may upload a fixed package (i.e., do a source NMU).

During the release cycle (see ‘Stable, testing, and unstable’ on page 19), NMUs which fix serious
or higher severity bugs are encouraged and accepted. Even during this window, however, you
should endeavor to reach the current maintainer of the package; they might be just about to upload
a fix for the problem. As with any source NMU, the guidelines found in ‘How to do a source NMU’
on the next page need to be followed.

Bug fixes to unstable by non-maintainers are also acceptable, but only as a last resort or with
permission. The following protocol should be respected to do an NMU:

• Make sure that the package’s bug is in the Debian Bug Tracking System (BTS). If not, submit
a bug.

• Wait a few days the response from the maintainer. If you don’t get any response, you may
want to help him by sending the patch that fixes the bug. Don’t forget to tag the bug with
the “patch” keyword.

• Wait a few more days. If you still haven’t got an answer from the maintainer, send him a
mail announcing your intent to NMU the package. Prepare an NMU as described in ‘How to

Chapter 5. Managing Packages 37

do a source NMU’ on this page, test it carefully on your machine (cf. ‘Checking the package
prior to upload’ on page 28). Double check that your patch doesn’t have any unexpected
side effects. Make sure your patch is as small and as non-disruptive as it can be.

• Upload your package to incoming in DELAYED/7-day (cf. ‘Delayed incoming’ on page 22),
send the final patch to the maintainer via the BTS, and explain him that he has 7 days to react
if he wants to cancel the NMU.

• Follow what happens, you’re responsible for any bug that you introduced with your NMU.
You should probably use ‘The Package Tracking System’ on page 24 (PTS) to stay informed
of the state of the package after your NMU.

5.2.4 How to do a source NMU

The following applies to porters insofar as they are playing the dual role of being both package
bug-fixers and package porters. If a porter has to change the Debian source archive, automati-
cally their upload is a source NMU and is subject to its rules. If a porter is simply uploading a
recompiled binary package, the rules are different; see ‘Guidelines for porter uploads’ on page 41.

First and foremost, it is critical that NMU patches to source should be as non-disruptive as pos-
sible. Do not do housekeeping tasks, do not change the name of modules or files, do not move
directories; in general, do not fix things which are not broken. Keep the patch as small as possible.
If things bother you aesthetically, talk to the Debian maintainer, talk to the upstream maintainer,
or submit a bug. However, aesthetic changes must not be made in a non-maintainer upload.

Source NMU version numbering

Whenever you have made a change to a package, no matter how trivial, the version number needs
to change. This enables our packing system to function.

If you are doing a non-maintainer upload (NMU), you should add a new minor version number to
the debian-revision part of the version number (the portion after the last hyphen). This extra minor
number will start at ‘1’. For example, consider the package ‘foo’, which is at version 1.1-3. In the
archive, the source package control file would be foo_1.1-3.dsc . The upstream version is ‘1.1’
and the Debian revision is ‘3’. The next NMU would add a new minor number ‘.1’ to the Debian
revision; the new source control file would be foo_1.1-3.1.dsc .

The Debian revision minor number is needed to avoid stealing one of the package maintainer’s
version numbers, which might disrupt their work. It also has the benefit of making it visually
clear that a package in the archive was not made by the official maintainer.

If there is no debian-revision component in the version number then one should be created, starting
at ‘0.1’. If it is absolutely necessary for someone other than the usual maintainer to make a release

Chapter 5. Managing Packages 38

based on a new upstream version then the person making the release should start with the debian-
revision value ‘0.1’. The usual maintainer of a package should start their debian-revision numbering
at ‘1’. Note that if you do this, you’ll have to invoke dpkg-buildpackage with the -sa switch
to force the build system to pick up the new source package (normally it only looks for Debian
revisions of ’0’ or ’1’ — it’s not yet clever enough to know about ‘0.1’).

Source NMUs must have a new changelog entry

A non-maintainer doing a source NMU must create a changelog entry, describing which bugs are
fixed by the NMU, and generally why the NMU was required and what it fixed. The changelog
entry will have the non-maintainer’s email address in the log entry and the NMU version number
in it.

By convention, source NMU changelog entries start with the line

* Non-maintainer upload

Source NMUs and the Bug Tracking System

Maintainers other than the official package maintainer should make as few changes to the package
as possible, and they should always send a patch as a unified context diff (diff -u) detailing
their changes to the Bug Tracking System.

What if you are simply recompiling the package? If you just need to recompile it for a single
architecture, then you may do a binary-only NMU as described in ‘Recompilation or binary-only
NMU’ on page 41 which doesn’t require any patch to be sent. If you want the package to be
recompiled for all architectures, then you do a source NMU as usual and you will have to send a
patch.

If the source NMU (non-maintainer upload) fixes some existing bugs, these bugs should be tagged
fixed in the Bug Tracking System rather than closed. By convention, only the official package
maintainer or the original bug submitter are allowed to close bugs. Fortunately, Debian’s archive
system recognizes NMUs and thus marks the bugs fixed in the NMU appropriately if the person
doing the NMU has listed all bugs in the changelog with the Closes: bug# nnnnn syntax (see
‘When bugs are closed by new uploads’ on page 49 for more information describing how to close
bugs via the changelog). Tagging the bugs fixed ensures that everyone knows that the bug was
fixed in an NMU; however the bug is left open until the changes in the NMU are incorporated
officially into the package by the official package maintainer.

Also, after doing an NMU, you have to open a new bug and include a patch showing all the
changes you have made. Alternatively you can send that information to the existing bugs that are
fixed by your NMU. The normal maintainer will either apply the patch or employ an alternate

Chapter 5. Managing Packages 39

method of fixing the problem. Sometimes bugs are fixed independently upstream, which is an-
other good reason to back out an NMU’s patch. If the maintainer decides not to apply the NMU’s
patch but to release a new version, the maintainer needs to ensure that the new upstream version
really fixes each problem that was fixed in the non-maintainer release.

In addition, the normal maintainer should always retain the entry in the changelog file document-
ing the non-maintainer upload.

Building source NMUs

Source NMU packages are built normally. Pick a distribution using the same rules as found in
‘Picking a distribution’ on page 30. Just as described in ‘Uploading a package’ on page 31, a
normal changes file, etc., will be built. In fact, all the prescriptions from ‘Package uploads’ on
page 27 apply.

Make sure you do not change the value of the maintainer in the debian/control file. Your name
as given in the NMU entry of the debian/changelog file will be used for signing the changes
file.

5.2.5 Acknowledging an NMU

If one of your packages has been NMUed, you have to incorporate the changes in your copy of the
sources. This is easy, you just have to apply the patch that has been sent to you. Once this is done,
you have to close the bugs that have been tagged fixed by the NMU. You can either close them
manually by sending the required mails to the BTS or by adding the required closes: #nnnn
in the changelog entry of your next upload.

In any case, you should not be upset by the NMU. An NMU is not a personal attack against the
maintainer. It is just the proof that someone cares enough about the package and was willing to
help you in your work. You should be thankful to him and you may want to ask him if he would
be interested to help you on a more frequent basis as co-maintainer or backup maintainer (see
‘Collaborative maintenance’ on page 43).

5.3 Porting and Being Ported

Debian supports an ever-increasing number of architectures. Even if you are not a porter, and you
don’t use any architecture but one, it is part of your duty as a maintainer to be aware of issues of
portability. Therefore, even if you are not a porter, you should read most of this chapter.

Porting is the act of building Debian packages for architectures that is different from the original
architecture of the package maintainer’s binary package. It is a unique and essential activity. In

Chapter 5. Managing Packages 40

fact, porters do most of the actual compiling of Debian packages. For instance, for a single i386
binary package, there must be a recompile for each architecture, which amounts to 12 more builds.

5.3.1 Being kind to porters

Porters have a difficult and unique task, since they are required to deal with a large volume of
packages. Ideally, every source package should build right out of the box. Unfortunately, this
is often not the case. This section contains a checklist of “gotchas” often committed by Debian
maintainers — common problems which often stymie porters, and make their jobs unnecessarily
difficult.

The first and most important watchword is to respond quickly to bug or issues raised by porters.
Please treat porters with courtesy, as if they were in fact co-maintainers of your package (which
in a way, they are). Please be tolerant of succinct or even unclear bug reports, doing your best to
hunt down whatever the problem is.

By far, most of the problems encountered by porters are caused by packaging bugs in the source
packages. Here is a checklist of things you should check or be aware of.

1. Make sure that your Build-Depends and Build-Depends-Indep settings in debian
/control are set properly. The best way to validate this is to use the debootstrap pack-
age to create an unstable chroot environment. Within that chrooted environment, install the
build-essential package and any package dependencies mentioned in Build-Depends
and/or Build-Depends-Indep . Finally, try building your package within that chrooted
environment. These steps can be automated by the use of the pbuilder program which is
provided by the package of the same name.

See the Debian Policy Manual (http://www.debian.org/doc/debian-policy/) for
instructions on setting build dependencies.

2. Don’t set architecture to a value other than “all” or “any” unless you really mean it. In
too many cases, maintainers don’t follow the instructions in the Debian Policy Manual
(http://www.debian.org/doc/debian-policy/). Setting your architecture to “i386”
is usually incorrect.

3. Make sure your source package is correct. Do dpkg-source -x package .dsc to make
sure your source package unpacks properly. Then, in there, try building your package from
scratch with dpkg-buildpackage .

4. Make sure you don’t ship your source package with the debian/files or debian/substvars
files. They should be removed by the ‘clean’ target of debian/rules .

5. Make sure you don’t rely on locally installed or hacked configurations or programs. For
instance, you should never be calling programs in /usr/local/bin or the like. Try not to

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. Managing Packages 41

rely on programs be setup in a special way. Try building your package on another machine,
even if it’s the same architecture.

6. Don’t depend on the package you’re building already being installed (a sub-case of the above
issue).

7. Don’t rely on the compiler being a certain version, if possible. If not, then make sure your
build dependencies reflect the restrictions, although you are probably asking for trouble,
since different architectures sometimes standardize on different compilers.

8. Make sure your debian/rules contains separate “binary-arch” and “binary-indep” targets,
as the Debian Policy Manual requires. Make sure that both targets work independently, that
is, that you can call the target without having called the other before. To test this, try to run
dpkg-buildpackage -b .

5.3.2 Guidelines for porter uploads

If the package builds out of the box for the architecture to be ported to, you are in luck and your job
is easy. This section applies to that case; it describes how to build and upload your binary package
so that it is properly installed into the archive. If you do have to patch the package in order to get
it to compile for the other architecture, you are actually doing a source NMU, so consult ‘How to
do a source NMU’ on page 37 instead.

For a porter upload, no changes are being made to the source. You do not need to touch any of the
files in the source package. This includes debian/changelog .

The way to invoke dpkg-buildpackage is as dpkg-buildpackage -B -m porter-email .
Of course, set porter-email to your email address. This will do a binary-only build of only the
architecture-dependent portions of the package, using the ‘binary-arch’ target in debian/rules .

Recompilation or binary-only NMU

Sometimes the initial porter upload is problematic because the environment in which the package
was built was not good enough (outdated or obsolete library, bad compiler, . . .). Then you may
just need to recompile it in an updated environment. However, you have to bump the version
number in this case, so that the old bad package can be replaced in the Debian archive (katie
refuses to install new packages if they don’t have a version number greater than the currently
available one). Despite the required modification of the changelog, these are called binary-only
NMUs — there is no need in this case to trigger all other architectures to consider themselves out
of date or requiring recompilation.

Such recompilations require special “magic” version numbering, so that the archive maintenance
tools recognize that, even though there is a new Debian version, there is no corresponding source

Chapter 5. Managing Packages 42

update. If you get this wrong, the archive maintainers will reject your upload (due to lack of
corresponding source code).

The “magic” for a recompilation-only NMU is triggered by using the third-level number on the
Debian part of the version. For instance, if the latest version you are recompiling against was
version “2.9-3”, your NMU should carry a version of “2.9-3.0.1”. If the latest version was “3.4-
2.1”, your NMU should have a version number of “3.4-2.1.1”.

When to do a source NMU if you are a porter

Porters doing a source NMU generally follow the guidelines found in ‘Non-Maintainer Uploads
(NMUs)’ on page 35, just like non-porters. However, it is expected that the wait cycle for a porter’s
source NMU is smaller than for a non-porter, since porters have to cope with a large quantity of
packages. Again, the situation varies depending on the distribution they are uploading to.

However, if you are a porter doing an NMU for ‘unstable’, the above guidelines for porting should
be followed, with two variations. Firstly, the acceptable waiting period — the time between when
the bug is submitted to the BTS and when it is OK to do an NMU — is seven days for porters
working on the unstable distribution. This period can be shortened if the problem is critical and
imposes hardship on the porting effort, at the discretion of the porter group. (Remember, none of
this is Policy, just mutually agreed upon guidelines.)

Secondly, porters doing source NMUs should make sure that the bug they submit to the BTS
should be of severity ‘serious’ or greater. This ensures that a single source package can be used to
compile every supported Debian architecture by release time. It is very important that we have
one version of the binary and source package for all architecture in order to comply with many
licenses.

Porters should try to avoid patches which simply kludge around bugs in the current version of
the compile environment, kernel, or libc. Sometimes such kludges can’t be helped. If you have
to kludge around compilers bugs and the like, make sure you #ifdef your work properly; also,
document your kludge so that people know to remove it once the external problems have been
fixed.

Porters may also have an unofficial location where they can put the results of their work during
the waiting period. This helps others running the port have the benefit of the porter’s work, even
during the waiting period. Of course, such locations have no official blessing or status, so buyer,
beware.

5.3.3 Tools for porters

There are several tools available for the porting effort. This section contains a brief introduction to
these tools; see the package documentation or references for full information.

Chapter 5. Managing Packages 43

quinn-diff

quinn-diff is used to locate the differences from one architecture to another. For instance, it
could tell you which packages need to be ported for architecture Y, based on architecture X.

buildd

The buildd system is used as a distributed, client-server build distribution system. It is usu-
ally used in conjunction with auto-builders, which are “slave” hosts which simply check out and
attempt to auto-build packages which need to be ported. There is also an email interface to the
system, which allows porters to “check out” a source package (usually one which cannot yet be
auto-built) and work on it.

buildd is not yet available as a package; however, most porting efforts are either using it cur-
rently or planning to use it in the near future. It collects a number of as yet unpackaged com-
ponents which are currently very useful and in use continually, such as andrea , sbuild and
wanna-build .

Some of the data produced by buildd which is generally useful to porters is available on the
web at http://buildd.debian.org/ . This data includes nightly updated information from
andrea (source dependencies) and quinn-diff (packages needing recompilation).

We are very excited about this system, since it potentially has so many uses. Independent de-
velopment groups can use the system for different sub-flavors of Debian, which may or may not
really be of general interest (for instance, a flavor of Debian built with gcc bounds checking). It
will also enable Debian to recompile entire distributions quickly.

dpkg-cross

dpkg-cross is a tool for installing libraries and headers for cross-compiling in a way similar
to dpkg . Furthermore, the functionality of dpkg-buildpackage and dpkg-shlibdeps is en-
hanced to support cross-compiling.

5.4 Collaborative maintenance

“Collaborative maintenance” is a term describing the sharing of Debian package maintenance
duties by several people. This collaboration is almost a good idea, since it generally results in
higher quality and faster bug fix turnaround time. It is strongly recommended that packages in
which a priority of Standard or which are part of the base set have co-maintainers.

http://buildd.debian.org/

Chapter 5. Managing Packages 44

Generally there is a primary maintainer and one or more co-maintainers. The primary maintainer
is the whose name is listed in the Maintainer field of the debian/control file. Co-maintainers
are all the other maintainers.

In its most basic form, the process of adding a new co-maintainer is quite easy:

• Setup the co-maintainer with access to the sources you build the package from. Gener-
ally this implies you are using a network-capable version control system, such as CVSor
Subversion .

• Add the co-maintainer’s correct maintainer name and address to the Uploaders field in the
global part of the debian/control file.

• Using the PTS (‘The Package Tracking System’ on page 24), the co-maintainers should sub-
scribe themselves to the appropriate source package.

5.5 Moving, Removing, Renaming, Adopting, and Orphaning Pack-
ages

Some archive manipulation operations are not automated in the Debian upload process. These
procedures should be manually followed by maintainers. This chapter gives guidelines in what
to do in these cases.

5.5.1 Moving packages

Sometimes a package will change its section. For instance, a package from the ‘non-free’ section
might be GPL’d in a later version, in which case, the package should be moved to ‘main’ or ‘con-
trib’.1

If you need to change the section for one of your packages, change the package control information
to place the package in the desired section, and re-upload the package (see the Debian Policy
Manual (http://www.debian.org/doc/debian-policy/) for details). If your new section
is valid, it will be moved automatically. If it does not, then contact the ftpmasters in order to
understand what happened.

If, on the other hand, you need to change the subsection of one of your packages (e.g., “devel”,
“admin”), the procedure is slightly different. Correct the subsection as found in the control file of
the package, and re-upload that. Also, you’ll need to get the override file updated, as described in
‘The override file’ on page 34.

1See the Debian Policy Manual (http://www.debian.org/doc/debian-policy/) for guidelines on what sec-
tion a package belongs in.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. Managing Packages 45

5.5.2 Removing packages

If for some reason you want to completely remove a package (say, if it is an old compatibility
library which is no longer required), you need to file a bug against ftp.debian.org asking
that the package be removed. Make sure you indicate which distribution the package should be
removed from. Normally, you can only have packages removed from unstable and experimental.
Packages are not removed from testing directly. Rather, they will be removed automatically after
the package has been removed from unstable and no package in testing depends on it.

You also have to detail the reasons justifying that request. This is to avoid unwanted removals
and to keep a trace of why a package has been removed. For example, you can provide the name
of the package that supersedes the one to be removed.

Usually you only ask the removal of a package maintained by yourself. If you want to remove
another package, you have to get the approval of its last maintainer.

If in doubt concerning whether a package is disposable, email <debian-devel@lists.debian.
org> asking for opinions. Also of interest is the apt-cache program from the apt package.
When invoked as apt-cache showpkg package , the program will show details for package,
including reverse depends.

Once the package has been removed, the package’s bugs should be handled. They should either be
reassigned to another package in the case where the actual code has evolved into another package
(e.g. libfoo12 was removed because libfoo13 supersedes it) or closed if the software is simply
no more part of Debian.

Removing packages from Incoming

In the past, it was possible to remove packages from incoming . However, with the introduction
of the new incoming system, this is no longer possible. Instead, you have to upload a new revision
of your package with a higher version as the package you want to replace. Both versions will be
installed in the archive but only the higher version will actually be available in unstable since the
previous version will immediately be replaced by the higher. However, if you do proper testing
of your packages, the need to replace a package should not occur too often anyway.

5.5.3 Replacing or renaming packages

Sometimes you made a mistake naming the package and you need to rename it. In this case, you
need to follow a two-step process. First, set your debian/control file to replace and conflict
with the obsolete name of the package (see the Debian Policy Manual (http://www.debian.
org/doc/debian-policy/) for details). Once you’ve uploaded that package, and the package
has moved into the archive, file a bug against ftp.debian.org asking to remove the package
with the obsolete name. Do not forget to properly reassign the package’s bugs at the same time.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. Managing Packages 46

5.5.4 Orphaning a package

If you can no longer maintain a package, you need to inform the others about that, and see that the
package is marked as orphaned. You should set the package maintainer to Debian QA Group
<packages@qa.debian.org> and submit a bug report against the pseudo package wnpp. The
bug report should be titled O: package -- short description indicating that the package
is now orphaned. The severity of the bug should be set to normal. If you feel it’s necessary, send a
copy to <debian-devel@lists.debian.org> by putting the address in the X-Debbugs-CC:
header of the message (no, don’t use CC:, because that way the message’s subject won’t indicate
the bug number).

If the package is especially crucial to Debian, you should instead submit a bug against wnpp and
title it RFA: package -- short description and set its severity to important. RFAstands
for Request For Adoption. Definitely copy the message to debian-devel in this case, as described
above.

Read instructions on the WNPP web pages (http://www.debian.org/devel/wnpp/) for more
information.

5.5.5 Adopting a package

A list of packages in need of a new maintainer is available at in the Work-Needing and Prospective
Packages list (WNPP) (http://www.debian.org/devel/wnpp/). If you wish to take over
maintenance of any of the packages listed in the WNPP, please take a look at the aforementioned
page for information and procedures.

It is not OK to simply take over a package that you feel is neglected — that would be package
hijacking. You can, of course, contact the current maintainer and ask them if you may take over
the package. However, without their assent, you may not take over the package. Even if they
ignore you, that is still not grounds to take over a package. If you really feel that a maintainer has
gone AWOL (absent without leave), post a query to <debian-private@lists.debian.org> .
You may also inform the QA group (cf. ‘Dealing with unreachable maintainers’ on page 56).

If you take over an old package, you probably want to be listed as the package’s official main-
tainer in the bug system. This will happen automatically once you upload a new version with an
updated Maintainer: field, although it can take a few hours after the upload is done. If you
do not expect to upload a new version for a while, you can use ‘The Package Tracking System’ on
page 24 to get the bug reports. However, make sure that the old maintainer is not embarrassed by
the fact that he will continue to receive the bugs during that time.

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/

Chapter 5. Managing Packages 47

5.6 Handling package bugs

Often as a package maintainer, you find bugs in other packages or else have bugs reported to
your packages which need to be reassigned. The BTS instructions (http://www.debian.org/
Bugs/server-control.html) can tell you how to do this. Some information on filing bugs
can be found in ‘Bug Reporting’ on page 55.

5.6.1 Monitoring bugs

If you want to be a good maintainer, you should periodically check the Debian bug tracking sys-
tem (BTS) (http://www.debian.org/Bugs/) for your packages. The BTS contains all the open
bugs against your packages. You can check them by browsing this page: http://bugs.debian.org/ yourlogin @debian.org .

Maintainers interact with the BTS via email addresses at bugs.debian.org . Documentation on
available commands can be found at http://www.debian.org/Bugs/ , or, if you have installed
the doc-debian package, you can look at the local files /usr/share/doc/debian/bug-* .

Some find it useful to get periodic reports on open bugs. You can add a cron job such as the
following if you want to get a weekly email outlining all the open bugs against your packages:

ask for weekly reports of bugs in my packages
0 17 * * fri echo "index maint address " | mail request@bugs.debian.org

Replace address with your official Debian maintainer address.

5.6.2 Responding to bugs

Make sure that any discussion you have about bugs are sent both to the original submitter of
the bug, and the bug itself (e.g., <123@bugs.debian.org>). If you’re writing a new mail and
you don’t remember the submitter email address, you can use the <123-submitter@bugs.
debian.org> email to contact the submitter and to record your mail within the bug log (that
means you don’t need to send a copy of the mail to <123@bugs.debian.org>).

You should never close bugs via the bug server close command sent to <control@bugs.debian.
org> . If you do so, the original submitter will not receive any information about why the bug was
closed.

5.6.3 Bug housekeeping

As a package maintainer, you will often find bugs in other packages or have bugs reported against
your packages which are actually bugs in other packages. The BTS instructions (http://www.

http://www.debian.org/Bugs/server-control.html
http://www.debian.org/Bugs/server-control.html
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/server-control.html
http://www.debian.org/Bugs/server-control.html

Chapter 5. Managing Packages 48

debian.org/Bugs/server-control.html) document the technical operations of the BTS,
such as how to file, reassign, merge, and tag bugs. This section contains some guidelines for
managing your own bugs, based on the collective Debian developer experience.

Filing bugs for problems that you find in other packages is one of the “civic obligations” of main-
tainership, see ‘Bug Reporting’ on page 55 for details. However handling the bugs on your own
packages is even more important.

Here’s a list of steps that you may follow to handle a bug report:

1. Decide whether the report corresponds to a real bug or not. Sometimes users are just calling
a program in the wrong way because they haven’t read the documentation. If you diagnose
this, just close the bug with enough information to let the user correct his problem (give
pointers to the good documentation and so on). If the same report comes up again and again
you may ask yourself if the documentation is good enough or if the program shouldn’t detect
its misuse in order to give an informative error message. This is an issue that may need to
be brought to the upstream author.

If the bug submitter disagree with your decision to close the bug, he may reopen it until
you find an agreement on how to handle it. If you don’t find any, you may want to tag
the bug wontfix to let people know that the bug exists but that it won’t be corrected. If
this situation is unacceptable, you (or the submitter) may want to require a decision of the
technical committee by reassigning the bug to tech-ctte (you may use the clone command
of the BTS if you wish to keep it reported against your package).

2. If the bug is real but it’s caused by another package, just reassign the bug the right package.
If you don’t know which package it should be reassigned to, you may either ask for help
on <debian-devel@lists.debian.org> or reassign it to debian-policy to let them
decide which package is in fault.

Sometimes you also have to adjust the severity of the bug so that it matches our definition of
the severity. That’s because people tend to inflate the severity of bugs to make sure their bugs
are fixed quickly. Some bugs may even be dropped to wishlist severity when the requested
change is just cosmetic.

3. The bug submitter may have forgotten to provide some information, in that case you have to
ask him the information required. You may use the moreinfo tag to mark the bug as such.
Moreover if you can’t reproduce the bug, you tag it unreproducible . Anyone who can
reproduce the bug is then invited to provide more information on how to reproduce it. After
a few months, if this information has not been sent by someone, the bug may be closed.

4. If the bug is related to the packaging, you just fix it. If you are not able to fix it yourself, then
tag the bug as help . You can also ask for help on <debian-devel@lists.debian.org>
or <debian-qa@lists.debian.org> . If it’s an upstream problem, you have to forward
it to the upstream author. Forwarding a bug is not enough, you have to check at each release

http://www.debian.org/Bugs/server-control.html
http://www.debian.org/Bugs/server-control.html

Chapter 5. Managing Packages 49

if the bug has been fixed or not. If it has, you just close it, otherwise you have to remind the
author about it. If you have the required skills you can prepare a patch that fixes the bug
and that you send at the same time to the author. Make sure to send the patch in the BTS
and to tag the bug as patch .

5. If you have fixed a bug in your local copy, or if a fix has been committed to the CVS repos-
itory, you may tag the bug as pending to let people know that the bug is corrected and
that it will be closed with the next upload (add the closes: in the changelog). This is
particularly useful if you are several developers working on the same package.

6. Once a corrected package is available in the unstable distribution, you can close the bug. This
can be done automatically, read ‘When bugs are closed by new uploads’ on the current page.

5.6.4 When bugs are closed by new uploads

If you fix a bug in your packages, it is your responsibility as the package maintainer to close the
bug when it has been fixed. However, you should not close the bug until the package which fixes
the bug has been accepted into the Debian archive. Therefore, once you get notification that your
updated package has been installed into the archive, you can and should close the bug in the BTS.

If you are using a new version of dpkg-dev and you do your changelog entry properly, the
archive maintenance software will close the bugs automatically. All you have to do is follow a
certain syntax in your debian/changelog file:

acme-cannon (3.1415) unstable; urgency=low

* Frobbed with options (closes: Bug#98339)
* Added safety to prevent operator dismemberment, closes: bug#98765,

bug#98713, #98714.
* Added man page. Closes: #98725.

Technically speaking, the following Perl regular expression is what is used:

/closes:\s*(?:bug)?\#\s*\d+(?:,\s*(?:bug)?\#\s*\d+)*/ig

The author prefers the closes: # XXXsyntax, as one of the most concise and easiest to integrate
with the text of the changelog .

If you want to close bugs the old fashioned, manual way, it is usually sufficient to mail the
.changes file to <XXX-done@bugs.debian.org> , where XXX is your bug number.

Chapter 5. Managing Packages 50

5.6.5 Lintian reports

You should periodically get the new lintian from ‘unstable’ and check over all your pack-
ages. Alternatively you can check for your maintainer email address at the online lintian re-
port (http://lintian.debian.org/). That report, which is updated automatically, contains
lintian reports against the latest version of the distribution (usually from ’unstable’) using the
latest lintian .

http://lintian.debian.org/

51

Chapter 6

Best Packaging Practices

Debian’s quality is largely due to its Policy that all packages follow. But it’s also because we
accumulated years of experience in packaging; very talented people created great tools to make
good packages without much troubles.

This chapter provides the best known solutions to common problems faced during packaging.
It also lists various advice collected on several mailing lists. By following them, you will make
Debian’s quality even better.

6.1 Packaging tools and common cases

6.1.1 Helper scripts

To help you in your packaging effort, you can use helper scripts. The best scripts available are
provided by debhelper . With dh_make (package dh-make), you can generate in a few seconds a
package that is mostly ready. However that apparent simplicity is hiding many things done by the
helper scripts. You have to know what is done by them, that’s why you are strongly encouraged
to read the corresponding manual pages, starting with debhelper(1) . That’s required because
you’ll have to understand what is going on to be able to use them wisely and to fix bugs in a pretty
way.

debhelper is very useful because it lets you follow the latest Debian policy without doing many
modifications since the changes that can be automated are almost always automatically done by
a debhelper script. Furthermore it offers enough flexibility to be able to use it in conjunction with
some hand crafted shell invocations within the rules file.

You can however decide to not use any helper script, and still write some very good rules file.
Many examples are available at http://people.debian.org/~srivasta/rules .

http://people.debian.org/~srivasta/rules

Chapter 6. Best Packaging Practices 52

6.1.2 Package with multiple patches

Big packages tend to have many upstream bugs that you want to fix within the Debian package.
If you just correct the bug in the source, all the fixes are directly integrated in the .diff.gz file
and you can’t easily differentiate the various patches that you applied. It gets very messy when
you have to update the package to a new upstream version which integrates some of the fixes (but
not all).

The good solution is to keep separate patches within the debian/patches directory and to apply
them on the fly at build time. The package dbs provides an implementation of such a system, you
just have to build-depend on dbs to be able to use its functionalities. The package hello-dbs is
a simple example that demonstrates how to use dbs .

Additionally, dbs provides facilities to create the patches and to keep track of what they are for.

6.1.3 Multiple binary packages

A single source package will often build several binary packages, either to provide several flavors
of the same software (examples are the vim-* packages) or to make several small packages instead
of a big one (it’s interesting if the user doesn’t need all the packages and can thus save some disk
space).

The second case can be easily managed by dh_install (from debhelper) to move files from
the build directory to the package’s temporary trees.

The first case is a bit more difficult since it involves multiple recompiles of the same software but
with different configure options. The vim is an example of how to manage this with an hand
crafted rules file.

6.1.4 Handling debconf translations

Like porters, translators have a difficult task. Since they work on many packages, they cannot keep
track of every change in packages in order to be informed when a translated string is outdated.
Fortunately debconf can automatically report outdated translations, if package maintainers fol-
low some basic guidelines described below.

Translators can use debconf-getlang (package debconf-utils) to write a templates.xx
file containing both English and localized fields (where xx is the language code, may be followed
by a country code). This file can be put into the debian subdirectory without any change.

When building a binary package, debian/templates.xx files are merged along with debian
/templates to generate the templates file contained in the binary package. This is automati-
cally done by dh_installdebconf (package debhelper). If you do not use debhelper, you can
do the same with debconf-mergetemplate (package debconf-utils).

Chapter 6. Best Packaging Practices 53

When the package maintainer needs to update the templates file, he only changes debian/templates .
When English strings in this file and in debian/templates.xx differ, translators do know that
their translation is outdated.

Please see the page about localizing debconf templates files (http://www.debian.org/intl/
l10n/templates/hints) at the Debian web site, it contains more detailed instructions, includ-
ing a full example.

6.2 Specific packaging practices

6.2.1 Libraries

Libraries are always difficult to package for various reasons. The policy imposes many constraints
to ease their maintenance and to make sure upgrades are as simple as possible when a new up-
stream version comes out. A breakage in a library can result in dozens of dependent packages to
break. . .

Good practices for library packaging have been grouped in the library packaging guide (http:
//www.netfort.gr.jp/~dancer/column/libpkg-guide/).

6.2.2 Other specific packages

Several subsets of packages have special sub-policies and corresponding packaging rules and
practices:

• Perl related packages have a perl policy (http://www.debian.org/doc/packaging-manuals/
perl-policy/), some examples of packages following that policy are libdbd-pg-perl
(binary perl module) or libmldbm-perl (arch independent perl module).

• Python related packages have their python policy: /usr/share/doc/python/python-policy.txt.gz
(in the python package).

• Emacs related packages have the emacs policy (http://www.debian.org/doc/packaging-manuals/
debian-emacs-policy/).

• Java related packages have their java policy (http://people.debian.org/~opal/java/
policy.html/).

• Ocaml related packages have their ocaml policy: /usr/share/doc/ocaml/ocaml_packaging_policy.gz
(in the ocaml package). A good example is the camlzip source package.

http://www.debian.org/intl/l10n/templates/hints
http://www.debian.org/intl/l10n/templates/hints
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/
http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy/
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy/
http://people.debian.org/~opal/java/policy.html/
http://people.debian.org/~opal/java/policy.html/

Chapter 6. Best Packaging Practices 54

6.3 Configuration management

6.3.1 The wise use of debconf

Debconf is a configuration management system, it is used by all the various packaging scripts
(postinst mainly) to request feedback from the user concerning how to configure the package.
Direct user interactions must now be avoided in favor of debconf interaction. This will enable
non-interactive installations in the future.

Debconf is a great tool but it is often badly used . . . many common mistakes are listed in the
debconf-devel(8) man page. It is something that you must read if you decide to use debconf.

6.4 Miscellaneous advice

6.4.1 Writing useful descriptions

The description of the package (as defined by the corresponding field in the control file) is
usually the first information available to the user before he installs it. As such, it should provide
all the required information to let him decide whether to install the package.

For example, apart from the usual description that you adapt from the upstream README, you
should include the URL of the web site if there’s any. If the package is not yet considered stable by
the author, you may also want to warn the user that the package is not ready for production use.

Last but not least, since the first user impression is based on that description, you should be careful
to avoid English mistakes. Ensure that you spell check it. ispell has a special option (-g) for
that:

ispell -d american -g debian/control

55

Chapter 7

Beyond Packaging

Debian is about a lot more than just packaging software and maintaining those packages. This
chapter contains information about ways, often really critical ways, to contribute to Debian be-
yond simply creating and maintaining packages.

As a volunteer organization, Debian relies on the discretion of its members in choosing what they
want to work on, and choosing what is the most critical thing to spend their time on.

7.1 Bug Reporting

We encourage you to file bugs as you find them in Debian packages. In fact, Debian developers
are often the first line testers. Finding and reporting bugs in other developer’s packages improves
the quality of Debian.

Try to submit the bug from a normal user account at which you are likely to receive mail. Do not
submit bugs as root.

Make sure the bug is not already filed against a package. Try to do a good job reporting a bug and
redirecting it to the proper location. For extra credit, you can go through other packages, merg-
ing bugs which are reported more than once, or setting bug severities to ‘fixed’ when they have
already been fixed. Note that when you are neither the bug submitter nor the package maintainer,
you should not actually close the bug (unless you secure permission from the maintainer).

From time to time you may want to check what has been going on with the bug reports that you
submitted. Take this opportunity to close those that you can’t reproduce anymore. To find out all
the bugs you submitted, you just have to visit http://bugs.debian.org/from:<your-email-addr> .

Chapter 7. Beyond Packaging 56

7.1.1 Reporting lots of bugs at once

Reporting a great number of bugs for the same problem on a great number of different packages —
i.e., more than 10 — is a deprecated practice. Take all possible steps to avoid submitting bulk bugs
at all. For instance, if checking for the problem can be automated, add a new check to lintian
so that an error or warning is emitted.

If you report more than 10 bugs on the same topic at once, it is recommended that you send a mes-
sage to <debian-devel@lists.debian.org> describing your intention before submitting the
report. This will allow other developers to verify that the bug is a real problem. In addition, it will
help prevent a situation in which several maintainers start filing the same bug report simultane-
ously.

Note that when sending lots of bugs on the same subject, you should send the bug report to
<maintonly@bugs.debian.org> so that the bug report is not forwarded to the bug distribu-
tion mailing list.

7.2 Quality Assurance effort

Even though there is a dedicated group of people for Quality Assurance, QA duties are not re-
served solely for them. You can participate in this effort by keeping your packages as bug-free as
possible, and as lintian-clean (see ‘Lintian reports’ on page 50) as possible. If you do not find that
possible, then you should consider orphaning some of your packages (see ‘Orphaning a pack-
age’ on page 46). Alternatively, you may ask the help of other people in order to catch up the
backlog of bugs that you have (you can ask for help on <debian-qa@lists.debian.org> or
<debian-devel@lists.debian.org>).

7.3 Dealing with unreachable maintainers

If you notice that a package is lacking maintenance, you should make sure the maintainer is active
and will continue to work on his packages. Try contacting him yourself.

If you do not get a reply after a few weeks you should collect all useful information about this
maintainer. Start by logging into the Debian Developer’s Database (https://db.debian.org/)
and doing a full search to check whether the maintainer is on vacation and when he was last seen.
Collect any important package names he maintains and any Release Critical bugs filled against
them.

Send all this information to <debian-qa@lists.debian.org> , in order to let the QA people
do whatever is needed.

https://db.debian.org/

Chapter 7. Beyond Packaging 57

7.4 Contacting other maintainers

During your lifetime within Debian, you will have to contact other maintainers for various rea-
sons. You may want to discuss a new way of cooperating between a set of related packages, or
you may simply remind someone that a new upstream version is available and that you need it.

Looking up the email address of the maintainer for the package can be distracting. Fortunately,
there is a simple email alias, <package>@packages.debian.org , which provides a way to
email the maintainer, whatever their individual email address (or addresses) may be. Replace
<package> with the name of a source or a binary package.

You may also be interested by contacting the persons who are subscribed to a given source package
via ‘The Package Tracking System’ on page 24. You can do so by using the <package-name>@packages.qa.debian.org
email address.

7.5 Interacting with prospective Debian developers

Debian’s success depends on its ability to attract and retain new and talented volunteers. If you
are an experienced developer, we recommend that you get involved with the process of bringing
in new developers. This section describes how to help new prospective developers.

7.5.1 Sponsoring packages

Sponsoring a package means uploading a package for a maintainer who is not able to do it on
their own, a new maintainer applicant. Sponsoring a package also means accepting responsibility
for it.

If you wish to volunteer as a sponsor, you can sign up at http://www.internatif.org/
bortzmeyer/debian/sponsor/ .

New maintainers usually have certain difficulties creating Debian packages — this is quite under-
standable. That is why the sponsor is there, to check the package and verify that it is good enough
for inclusion in Debian. (Note that if the sponsored package is new, the ftpmasters will also have
to inspect it before letting it in.)

Sponsoring merely by signing the upload or just recompiling is definitely not recommended. You
need to build the source package just like you would build a package of your own. Remember
that it doesn’t matter that you left the prospective developer’s name both in the changelog and
the control file, the upload can still be traced to you.

If you are an application manager for a prospective developer, you can also be their sponsor.
That way you can also verify how the applicant is handling the ’Tasks and Skills’ part of their
application.

http://www.internatif.org/bortzmeyer/debian/sponsor/
http://www.internatif.org/bortzmeyer/debian/sponsor/

Chapter 7. Beyond Packaging 58

7.5.2 Managing sponsored packages

By uploading a sponsored package to Debian, you are certifying that the package meets minimum
Debian standards. That implies that you must build and test the package on your own system
before uploading.

You can not simply upload a binary .deb from the sponsoree. In theory, you should only ask
only for the diff file, and the location of the original source tarball, and then you should download
the source and apply the diff yourself. In practice, you may want to use the source package built
by your sponsoree. In that case you have to check that he hasn’t altered the upstream files in the
.orig.tar.gz file that he’s providing.

Do not be afraid to write the sponsoree back and point out changes that need to be made. It often
takes several rounds of back-and-forth email before the package is in acceptable shape. Being a
sponsor means being a mentor.

Once the package meets Debian standards, build the package with

dpkg-buildpackage -us -uc

and sign it with

debsign -m <your-email-addr> <changes-file>

before uploading it to the incoming directory.

The Maintainer field of the control file and the changelog should list the person who did the
packaging, i.e. the sponsoree. The sponsoree will therefore get all the BTS mail about the package.

If you prefer to leave a more evident trace of your sponsorship job, you can add a line stating it in
the most recent changelog entry.

You are encouraged to keep tabs on the package you sponsor using ‘The Package Tracking System’
on page 24.

7.5.3 Advocating new developers

See the page about advocating a prospective developer (http://www.debian.org/devel/
join/nm-advocate) at the Debian web site.

7.5.4 Handling new maintainer applications

Please see Checklist for Application Managers (http://www.debian.org/devel/join/nm-amchecklist)
at the Debian web site.

http://www.debian.org/devel/join/nm-advocate
http://www.debian.org/devel/join/nm-advocate
http://www.debian.org/devel/join/nm-amchecklist

59

Appendix A

Overview of Debian Maintainer Tools

This section contains a rough overview of the tools available to maintainers. The following is by
no means complete or definitive, but just a guide to some of the more popular tools.

Debian maintainer tools are meant to help convenience developers and free their time for critical
tasks. As Larry Wall says, there’s more than one way to do it.

Some people prefer to use high-level package maintenance tools and some do not. Debian is
officially agnostic on this issue; any tool which gets the job done is fine. Therefore, this section is
not meant to stipulate to anyone which tools they should use or how they should go about with
their duties of maintainership. Nor is it meant to endorse any particular tool to the exclusion of a
competing tool.

Most of the descriptions of these packages come from the actual package descriptions themselves.
Further information can be found in the package documentation itself. You can also see more info
with the command apt-cache show <package-name> .

A.1 dpkg-dev

dpkg-dev contains the tools (including dpkg-source) required to unpack, build and upload
Debian source packages. These utilities contain the fundamental, low-level functionality required
to create and manipulated packages; as such, they are required for any Debian maintainer.

A.2 lintian

Lintian dissects Debian packages and reports bugs and policy violations. It contains automated
checks for many aspects of Debian policy as well as some checks for common errors. The use of

Chapter A. Overview of Debian Maintainer Tools 60

lintian has already been discussed in ‘Checking the package prior to upload’ on page 28 and
‘Lintian reports’ on page 50.

A.3 debconf

debconf provides a consistent interface to configuring packages interactively. It is user inter-
face independent, allowing end-users to configure packages with a text-only interface, an HTML
interface, or a dialog interface. New interfaces can be added modularly.

You can find documentation for this package in the debconf-doc package.

Many feel that this system should be used for all packages requiring interactive configuration.
debconf is not currently required by Debian Policy, however, that may change in the future.

A.4 debhelper

debhelper is a collection of programs that can be used in debian/rules to automate common
tasks related to building binary Debian packages. Programs are included to install various files
into your package, compress files, fix file permissions, integrate your package with the Debian
menu system.

Unlike some approaches, debhelper is broken into several small, granular commands which act
in a consistent manner. As such, it allows a greater granularity of control than some of the other
“debian/rules tools”.

There are a number of little debhelper add-on packages, too transient to document. You can see
the list of most of them by doing apt-cache search ^dh- .

A.5 debmake

debmake , a pre-cursor to debhelper , is a less granular debian/rules assistant. It includes
two main programs: deb-make , which can be used to help a maintainer convert a regular (non-
Debian) source archive into a Debian source package; and debstd , which incorporates in one big
shot the same sort of automated functions that one finds in debhelper .

The consensus is that debmake is now deprecated in favor of debhelper . However, it’s not a
bug to use debmake .

Chapter A. Overview of Debian Maintainer Tools 61

A.6 yada

yada is another packaging helper tool. It uses a debian/packages file to auto-generate debian
/rules and other necessary files in the debian/ subdirectory.

Note that yada is called “essentially unmaintained” by it’s own maintainer, Charles Briscoe-
Smith. As such, it can be considered deprecated.

A.7 equivs

equivs is another package for making packages. It is often suggested for local use if you need
to make a package simply to fulfill dependencies. It is also sometimes used when making “meta-
packages”, which are packages whose only purpose is to depend on other packages.

A.8 cvs-buildpackage

cvs-buildpackage provides the capability to inject or import Debian source packages into a
CVS repository, build a Debian package from the CVS repository, and helps in integrating up-
stream changes into the repository.

These utilities provide an infrastructure to facilitate the use of CVS by Debian maintainers. This al-
lows one to keep separate CVS branches of a package for stable, unstable, and possibly experimental
distributions, along with the other benefits of a version control system.

A.9 dupload

dupload is a package and a script to automatically upload Debian packages to the Debian archive,
to log the upload, and to send mail about the upload of a package. You can configure it for new
upload locations or methods.

A.10 dput

The dput package and script does much the same thing as dupload , but in a different way. It has
some features over dupload , such as the ability to check the GnuPG signature and checksums
before uploading, and the possibility of running dinstall in dry-run mode after the upload.

Chapter A. Overview of Debian Maintainer Tools 62

A.11 fakeroot

fakeroot simulates root privileges. This enables you to build packages without being root (pack-
ages usually want to install files with root ownership). If you have fakeroot installed, you can
build packages as a user: dpkg-buildpackage -rfakeroot .

A.12 debootstrap

The debootstrap package and script allows you to “bootstrap” a Debian base system into any
part of your file-system. By “base system”, we mean the bare minimum of packages required to
operate and install the rest of the system.

Having a system like this can be useful in many ways. For instance, you can chroot into it if you
want to test your build depends. Or, you can test how your package behaves when installed into
a bare base system.

A.13 pbuilder

pbuilder constructs a chrooted system, and builds a package inside the chroot. It is very useful
to check that a package’s build-dependencies are correct, and to be sure that unnecessary and
wrong build dependencies will not exist in the resulting package.

A.14 devscripts

devscripts is a package containing a few wrappers and tools which are very helpful for main-
taining your Debian packages. Example scripts include debchange and dch , which manipulate
your debian/changelog file from the command-line, and debuild , which is a wrapper around
dpkg-buildpackage . The bts utility is also very helpful to update the state of bug reports on
the command line, as is uscan to watch for new upstream versions of your packages. Check the
devscripts(1) manual page for a complete list of available scripts.

A.15 dpkg-dev-el

dpkg-dev-el is an Emacs lisp package which provides assistance when editing some of the files
in the debian directory of your package. For instance, when editing debian/changelog , there
are handy functions for finalizing a version and listing the package’s current bugs.

Chapter A. Overview of Debian Maintainer Tools 63

A.16 debget

debget is a package containing a convenient script which can be helpful in downloading files
from the Debian archive. You can use it to download source packages, for instance (although
apt-get source <package-name> does pretty much the same thing).

	Scope of This Document
	Applying to Become a Maintainer
	Getting started
	Registering as a Debian developer
	Debian mentors and sponsors

	Debian Developer's Duties
	Maintaining your Debian information
	Maintaining your public key
	Voting
	Going on vacation gracefully
	Coordination with upstream developers
	Managing release-critical bugs
	Retiring

	Resources for Debian Developers
	Mailing lists
	IRC channels
	Documentation
	Debian servers
	The master server
	The ftp-master server
	The WWW server
	The CVS server
	The Developers Database

	Mirrors of Debian servers
	Other Debian developer machines
	The Debian archive
	Sections
	Architectures
	Packages
	Distribution directories
	Release code names

	The Incoming system
	Delayed incoming

	The testing scripts
	Package's information
	On the web
	The madison utility

	The Package Tracking System
	The PTS email interface
	Filtering PTS mails
	Forwarding CVS commits in the PTS

	Managing Packages
	Package uploads
	New packages
	Adding an entry to =1spdebian /changelog
	Checking the package prior to upload
	Generating the changes file
	Uploading a package
	Announcing package uploads
	Notification that a new package has been installed

	Non-Maintainer Uploads (NMUs)
	Terminology
	Who can do an NMU
	When to do a source NMU
	How to do a source NMU
	Acknowledging an NMU

	Porting and Being Ported
	Being kind to porters
	Guidelines for porter uploads
	Tools for porters

	Collaborative maintenance
	Moving, Removing, Renaming, Adopting, and Orphaning Packages
	Moving packages
	Removing packages
	Replacing or renaming packages
	Orphaning a package
	Adopting a package

	Handling package bugs
	Monitoring bugs
	Responding to bugs
	Bug housekeeping
	When bugs are closed by new uploads
	Lintian reports

	Best Packaging Practices
	Packaging tools and common cases
	Helper scripts
	Package with multiple patches
	Multiple binary packages
	Handling debconf translations

	Specific packaging practices
	Libraries
	Other specific packages

	Configuration management
	The wise use of debconf

	Miscellaneous advice
	Writing useful descriptions

	Beyond Packaging
	Bug Reporting
	Reporting lots of bugs at once

	Quality Assurance effort
	Dealing with unreachable maintainers
	Contacting other maintainers
	Interacting with prospective Debian developers
	Sponsoring packages
	Managing sponsored packages
	Advocating new developers
	Handling new maintainer applications

	Overview of Debian Maintainer Tools
	dpkg-dev
	lintian
	debconf
	debhelper
	debmake
	yada
	equivs
	cvs-buildpackage
	dupload
	dput
	fakeroot
	debootstrap
	pbuilder
	devscripts
	dpkg-dev-el
	debget

